Hướng dẫn giải bài 11 trang 47 Toán 12 tập 1 Cánh Diều SGK chi tiết dễ hiểu để học sinh tham khảo giải Toán 12 Cánh diều tập 1 giỏi hơn.
Bài 11 trang 47 Toán 12 Tập 1 Cánh diều:
Một người nông dân có 15 000 000 đồng để làm một hàng rào hình chữ E dọc theo một con song báo quanh hai khu đất trồng rau có dạng hình chữ nhật bằng nhau (hình 35). Đối với mặt hàng rào song song với bờ sông thì chi phí nguyên vật liệu là 60 000 đồng/mét, còn đối với ba mặt hàng rào song song nhau thì chi phí nguyên vật liệu là 50 000 đồng/mét, mặt giáp với bờ sông không phải rào. Tìm diện tích lớn nhất của hai khu đất thu được sau khi làm hàng rào.
Giải bài 11 trang 47 Toán 12 Tập 1 Cánh diều:
Giả sử chiều dài từng mặt của ba mặt hàng rào song song nhau là x (m).
Chi phí để làm ba mặt hàng rào song song là: 3 ∙ x ∙ 50 000 = 150 000x (đồng).
Chi phí để làm mặt hàng rào song song với bờ sông là: 15 000 000 – 150 000x (đồng).
Chiều dài của mặt hàng rào song song với bờ sông là:
Rõ ràng, x phải thỏa mãn điều kiện 0 < x < 100.
Giả sử diện tích hàng rào không đáng kể, khi đó diện tích hai khu đất thu được sau khi làm hàng rào là:
Xét hàm số với x ∈ (0; 100).
Ta có
Trên khoảng (0; 100), S'(x) = 0 khi x = 50.
Bảng biến thiên của hàm số S(x) như sau:
Căn cứ bảng biến thiên, ta thấy: Trên khoảng (0; 100), hàm số S(x) đạt giá trị lớn nhất bằng 6 250 tại x = 50.
Vậy diện tích lớn nhất của hai khu đất thu được sau khi làm hàng rào là 6 250 m2.
Với lời giải bài 11 trang 47 Toán 12 tập 1 Cánh diều chi tiết, dễ hiểu ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải Toán 12 tập 1 Cánh diều. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.
• Xem thêm Giải Toán 12 Tập 1 Cánh Diều