Hotline 0939 629 809

Công thức, cách tính diện tích mặt cầu và thể tích khối cầu, bài tập vận dụng - Toán 12

10:42:5728/10/2020

Như các em đã biết, mặt cầu tâm O bán kính r là tập hợp những điểm M trong không gian cách điểm O cố định một khoảng không đổi bằng r (r>0).

Vậy công thức và cách tính diện tích mặt cầu, thể tích của khối cầu được viết như thế nào? Nội dung bài viết này chúng ta cùng ôn lại các công thức tính này và vận dụng vào các bài tập minh họa cụ thể.

Mặt cầu tâm O bán kính r

I. Công thức tính diện tích mặt cầu và thể tích khối cầu

1. Công thức tính diện tính mặt cầu

- Mặt cầu có bán kính r có diện tích là:

 

2. Công thức tính thể tích khối cầu

- Khối cầu có bán kính r có thể tích là:

  

> Chú ý: - Diện tích S của mặt cầu bán kính r bằng 4 lần diện tích hình tròn lớn nhất của mặt cầu đó.

- Thể tích V của khối cầu bán kính r bằng thể tích khối chóp có diện tích đáy bằng diện tích mặt cầu và có chiều cao bằng bán kính của khối cầu đó.

II. Bài tập vận dụng tính diện tích mặt cầu và Thể tính khối cầu

* Bài 1 (Bài 10 trang 49 SGK Hình học 12): Cho hình chóp S.ABC có bốn đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó.

* Lời giải:

- Minh họa hình như sau:
Tính diện tích mặt cầu và thể tích khối cầu bt1- Ta gọi M là trung điểm của cạnh AB.

- Ta có, ΔSAB là tam giác vuông tại S có SM là đường trung tuyến nên:

 

⇒ M là tâm đường tròn ngoại tiếp tam giác SAB.

- Kẻ đường thẳng Δ qua M và vuông góc với mp(SAB), khi đó ta có:

 Δ//SC và Δ là trục đường tròn ngoại tiếp ΔSAB.

- Trong mp(Δ,SC), đường trung trực của SC cắt Δ tại điểm I.

- Ta có: IS = IC. (1)

 và IS = IB = IA (2).

 Từ (1) và (2) suy ra: IA = IB= IC = IS

⇒ I là tâm mặt cầu ngoại tiếp hình chóp S.ABC

- Bán kính mặt cầu ngoại tiếp hình chóp là:

  với

 

 

- Diện tích mặt cầu là:

 

- Thể tích khối cầu là:

 

* Bài 2 (Bài 6 trang 50 SGK Hình học 12): Cho hình vuông ABCD cạnh a. Từ tâm O của hình vuông dựng đường thẳng Δ vuông góc với mặt phẳng (ABCD). Trên Δ lấy điểm S sao cho OS = a/2 . Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó.

* Lời giải:

- Hình minh họa như sau:tính diện tích mặt cầu và thể tích khối cầu bt2

- Giả sử Δ là trục của hình vuông ABCD, vậy tâm I của mặt cầu ngoại tiếp hình chóp S.ABCD nằm trên Δ.

- ABCD là hình vuông cạnh a nên ta có:

 

- Vì SO = a/2 < OC nên tâm I của mặt cầu phải nằm trên phần kéo dài SO.

- Ta có: 

 

 

 

- Vậy tâm I của mặt cầu ngoại tiếp hình chóp S.ABCD nằm trên SO mà SI = R = 31/4; (R là bán kính hình cầu), khi đó:

- Diện tích mặt cầu là: 

- Thể tích khối cầu là: 

* Bài 3 (Bài 3 trang 51 SGK Hình học 12): Hình chóp S.ABC có đáy là tam giác ABC vuông tại A, SA vuông góc với mặt phẳng (ABC) và SA = a, AB = b, AC = c. Mặt cầu đi qua các đỉnh A, B, C, S có bán kính r bằng bao nhiêu?

* Lời giải:

- Hình minh họa như sau:Tính diện tích mặt cầu và thể tích khối cầu bt3

- Gọi M là trung điểm của BC, khi đó MC = MB = MA ⇒ M là tâm đường tròn ngoại tiếp ΔABC.

- Dựng Mt ⊥ (ABC) ta có: Mt//SA và Mt là trục đường tròn ngoại tiếp ΔABC

- Trong mp(SA,Mt) đường trung trực của SA cắt Mt tại I, ta có:

 IS = IA và IA = IB = IC

⇒ IS = IA = IB = IC

⇒ I là tâm mặt cầu ngoại tiếp tứ diện S.ABC 

- Bán kính mặt cầu: , với

 

 

Đến đây nếu muốn tính diện tích mặt cầu tâm I bán kính R hay thể tích mặt cầu tâm I bán kính R ta chỉ việc vận dụng công thức là ra kết quả. 

Như vậy, việc vận dụng công thức tính diện tích mặt cầu mà thể tích khối cầu tương đối dễ dàng, tuy nhiên việc xác định được bán kính của mặt cầu hay bán kính của khối cầu là điều không dễ.

Vì vậy, các em cần làm nhiều các bài tập liên quan để xác định được bán kính của mặt cầu, khối cầu từ đó mới vận dụng được công thức chúng ta có, chúc các em thành công.

Đánh giá & nhận xét

captcha
Tin liên quan