Hotline 0939 629 809

Các dạng bài tập về tính đơn điệu (đồng biến, nghịch biến) của hàm số - Toán lớp 12

11:30:2010/06/2020

Xét tính đồng biến, nghịch biến của hàm số là khái niệm các em đã làm quen ở những lớp học trước. Tuy nhiên, cũng như các môn học khác, kiến thức ở 12 sẽ có các dạng toán khó hơn phức tạp hơn các lớp trước.

Ngoài những bài tập xét tính đơn điệu của hàm số cụ thể, tường minh thì dạng toán xét tính đồng biến, nghịch biến của hàm số trên tập số thực R hay trên một khoảng cho trước có tham số sẽ khó hơn. Để giải các dạng bài tập này, chúng ta cùng tìm hiểu qua bài viết dưới đây.

I. Kiến thức về tính đơn điệu của hàm số cần nhớ.

1. Định nghĩa tính đơn điệu của hàm số

• Cho hàm số y = f(x) xác định trên K (với K là một khoảng hoặc một đoạn hoặc nửa khoảng).

- Hàm số y = f(x) là đồng biến (tăng) trên K nếu ∀x1, x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).

- Hàm số y = f(x) là nghịch biến (giảm) trên K nếu ∀x1, x2 ∈ K, x1 < x2 ⇒ f(x1) > f(x2).

• Hàm đồng biến hoặc nghịch biến trên K được gọi chung là đơn điệu trên K.

2. Điều kiện cần và đủ để hàm số đơn điệu

a) Điều kiện cần để hàm số đơn điệu:

• Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.

- Nếu hàm số đồng biến trên khoảng K thì f'(x) ≥ 0, ∀x ∈ K và f'(x) = 0 xảy ra tại một số hữu hạn điểm.

- Nếu hàm số nghịch biến trên khoảng K thì f'(x) ≤ 0, ∀x ∈ K và f'(x) = 0 xảy ra tại một số hữu hạn điểm.

b) Điều kiện đủ để hàm số đơn điệu

• Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.

- Nếu f'(x) > 0, ∀x ∈ K thì hàm số đồng biến trên khoảng K

- Nếu f'(x) < 0, ∀x ∈ K thì hàm số nghịch biến trên khoảng K

- Nếu f'(x) = 0, ∀x ∈ K thì hàm số không đổi trên khoảng K

các dạng toán về tính đơn điệu của hàm số

II. Các dạng bài tập xét tính đơn điệu (đồng biến, nghịch biến) của hàm số

° Xét tính đơn điệu của hàm số cụ thể (không có tham số)

* Phương pháp:

- Bước 1: Tìm Tập Xác Định, Tính f'(x)

- Bước 2: Tìm các điểm tại đó f'(x) = 0 hoặc f'(x) không xác định.

- Bước 3: Sắp xếp các điểm đó đăng dần và lập bảng biến thiên

- Bước 4: Kết luận khoảng đồng biến, nghịch biến của hàm số

* Ví dụ 1 (Bài 1 trang 9 SGK Giải tích 12): Xét sự đồng biến, nghịch biến của hàm số:

a)

b)

c)

° Lời giải:

a)

- Tập xác định : D = R

- Ta có: y' = 3 – 2x

- Cho y’ = 0 ⇔ 3 – 2x = 0 ⇔ x = 3/2.

- Tại x = 3/2 ⇒ y =25/4

- Ta có bảng biến thiên:

câu a bài 1 trang 9 sgk toán giải tích 12

- Kết luận: Vậy hàm số đồng biến trong khoảng (-∞; 3/2) và nghịch biến trong khoảng (3/2;+∞).

b)

- Tập xác định: D = R

- Ta có: y' = x2 + 6x - 7

- Cho y' = 0 ⇔ x = 1 hoặc x = -7

- Tại x = 1 ⇒ y = (-17)/3;  Tại x = -7 ⇒ y = 239/3.

- Ta có bảng biến thiên:

câu b bài 1 trang 9 sgk giải tích toán 12

- Kết luận: Vậy hàm số đồng biến trong các khoảng (-∞;-7) và (1;+∞); nghịch biến trong khoảng (-7;1).

c)

- Tập xác định: D = R

- Ta có: y'= 4x3 – 4x.

- Cho y' = 0 ⇔ 4x3 – 4x = 0 ⇔ 4x(x – 1)(x + 1) = 0

 ⇔ x = 0 hoặc x = 1 hoặc x = -1

- Tại x = 0 ⇒ y = 3;  Tại x = 1 ⇒ y = 2; Tại x = -1 ⇒ y = 2

- Ta có bảng biến thiên:

câu c bài 1 trang 9 sgk giải tích toán 12

* Ví dụ 2 (Bài 2 trang 10 SGK Giải tích 12): Tìm các khoảng đơn điệu của hàm số

a)     b)

c)     d)

° Lời giải:

a)

- Tập xác định: D = R {1}

- Ta có: 

 Vì y' không xác định tại x = 1

- Ta có bảng biến thiên sau:

câu a bài 2 trang 10 sgk toán giải tích 12

- Kết luận: Vậy hàm số đồng biến trên các khoảng (-∞;1) và (1;+∞).

b) Học sinh tự làm

c)

- Tập xác định: D = (-∞;-4]∪[5;+∞)

- Ta có: 

- Cho 

 y' không xác định tại x = -4 và x = 5

- Ta có bảng biến thiên sau

câu c bài 2 trang 10 sgk toán giải tích 12

- Kết luận: Vậy hàm số nghịch biến trong khoảng (-∞;-4); đồng biến trong khoảng (5;+∞).

d) Học sinh tự làm

° Xét tính đơn điệu của hàm số có tham số m

* Hàm đồng biến, nghịch biến trên TẬP XÁC ĐỊNH

* Phương pháp:

Đối với hàm đa thức bậc ba: y = f(x) = ax+ bx+ cx + d; (a≠0).

+ Tính f'(x) =3ax+ 2bx + c, khi đó:

- Hàm đa thức bậc ba y=f(x) đồng biến trên R 

- Hàm đa thức bậc ba y=f(x) nghịch biến trên R

Đối với hàm phân thức bậc nhất: 

+ Tính , khi đó:

- Hàm số đồng biến trên các khoảng xác định khi y'>0 hay (ad-bc)>0

- Hàm số nghịch biến trên các khoảng xác định khi y'<0 hay (ad-bc)<0

* Ví dụ 1: Cho hàm số: f(x) = x3 - 3mx + 3(2m - 1)x + 1. Xác định m để hàm số đồng biến trên tập xác định.

° Lời giải:

- TXĐ: D = R

- Tính f'(x) = 2x2 - 6mx + 3(2m - 1)

 Đặt g(x) = 2x2 - 6mx + 3(2m - 1) có a = 2; b = -6m; c = 3(2m - 1);

- Để hàm số đồng biến trên TXĐ khi và chỉ khi:

 

- Kết luận: Vậy với m = 1 thì hàm số đồng biến trên tập xác định D = R.

* Ví dụ 2: Cho hàm số: . Xác định m để hàm số nghịch biến trên từng khoảng xác định.

° Lời giải:

- TXĐ: R{-m}.

- Ta có:

- Hàm số nghịch biến trên từng khoảng xác định khi và chỉ khi:

 

- Kết luận: Vậy với -2 < m < 1 thì hàm số nghịch biến trên tập xác định.

* Hàm đồng biến, nghịch biến trên KHOẢNG CHO TRƯỚC

* Phương pháp:

- Bước 1: Kiểm tra tập xác định: Vì bài toán có tham số nên ta cần tìm điều kiện của tham số để hàm số xác định trên khoảng (a;b).

- Bước 2: Tính f'(x) và tìm điều kiện của tham số để f'(x) ≥ 0 hoặc f'(x) ≤ 0 trên khoảng (a;b) theo yêu cầu bài toán.

* Ví dụ: Cho hàm số f(x) = x3 - 3x2 - 3(m + 1)x  - (m+1)  (*)

a) Tìm m để hàm số đồng biến trên [1;+∞).

b) Tìm m để hàm số đồng biến trên [-1;3].

° Lời giải:

- TXĐ: D = R

- Ta có: f'(x) = 3x2 - 6x - 3(m + 1)

a) Tìm m để hàm số đồng biến trên [1;+∞).

- Để hàm số đồng biến trên [1;+∞) thì f'(x)≥0, ∀x ∈ [1;+∞).

 ⇒ 3x2 - 6x - 3(m + 1) ≥ 0, ∀x ∈ [1;+∞)

 ⇒ x2 - 2x - m - 1 ≥ 0, ∀x ∈ [1;+∞)

 ⇒ x2 - 2x - 1 ≥ m, ∀x ∈ [1;+∞)

- Đặt y(x) = x2 - 2x - 1 ⇒ y' = 2x - 2

- Cho y' = 0 ⇒ x = 1. Ta có bảng biến thiên sau:

 tính đơn điệu hàm số có tham số

- Từ bảng biến thiên ta có:  

 

- Kết luận: Vậy với m ≤ -2 thì hàm số (*) nghịch biến trên khoảng [1;+∞).

b) Tìm m để hàm số đồng biến trên [-1;3].

- Để hàm số nghịch biến trên [-1;3] thì f'(x)≤0, ∀x ∈ [-1;3].

 ⇒ 3x2 - 6x - 3(m + 1) ≤ 0,∀x ∈ [-1;3].

 ⇒ x2 - 2x - m - 1 ≤ 0, ∀x ∈ [-1;3].

 ⇒ x2 - 2x - 1 ≤ m, ∀x ∈∀x ∈ [-1;3].

- Đặt y(x) = x2 - 2x - 1  ⇒ y'(x) = 2x - 2

- Cho y'(x) = 0  ⇒ x = 1. Ta có bảng biến thiên sau:

tính đơn điệu hàm số có tham số

- Từ bảng biến thiên ta có:

 

- Kết luận: Vậy với m ≥ 2 thì hàm số (*) nghịch biến trên khoảng [-1;3].

Như vậy, hy vọng qua bài viết này, các em sẽ dễ dàng giải các bài toán về tính đơn điệu của hàm số trên tập xác định hay trên một khoảng cho trước. Nội dung về hàm số vẫn còn rất nhiều bài toán liên quan, hẹn gặp các em ở các chuyên đề tiếp theo.

Đánh giá & nhận xét

captcha
...
Trần thanh phương
Hàm số đb-nb trên khoảng cho trc ý ạ Phần ví dụ là tìm m để hàm số đb vậy sao kết luận là hàm số nghịch biến ???
Trả lời -
21/09/2020 - 22:48
...
Admin
Vậy em hỏi 1 bài cụ thể em nhé!
22/09/2020 - 17:17
captcha
...
BITCH
r nếu nó bắt tìm ẩn m để hàm số đb nb trên 1 khoảng làm kiểu j?
Trả lời -
17/09/2020 - 22:07
...
Admin
Một ví dụ cụ thể em nhé, tính các giá trị nghiệm theo m, xét đồng biến, nghịch biến với nghiệm có tham số m; rồi cho nghiệm theo tham số thỏa điều kiện bài toán yêu cầu -> tìm được m
21/09/2020 - 16:50
...
Minh Thanh
là dạng đb, nb trên một khoảng cho trước đó bạn
21/09/2020 - 16:54
captcha
...
nhu sgk
nhu sgk chan cha muon noi
Trả lời -
13/09/2020 - 18:41
captcha
...
Nam Nguyễn
Cho em xin file với ạ
Trả lời -
05/09/2020 - 15:25
...
Admin
Nội dung này em chịu khó xem trên website nha, chúc em học tốt !
09/09/2020 - 14:59
captcha
Xem thêm bình luận
4 trong số 4