Hotline 0939 629 809

Công thức Toán ôn thi THPT Quốc Gia - Đại học

17:50:1216/06/2019

Để ôn thi tốt môn Toán chuẩn bị cho kỳ thi THPT quốc gia vào Đại học thì điều đầu tiên các em cần làm là hệ thống lại các công thức Toán thật đầy đủ, chi tiết từ các công thức về lượng giác, công thức tính đạo hàm, nguyên hàm, cấp số cộng, cấp số nhân, đến các công thức tính diện tích hình tam giác, hình chữ nhật, hình tròn,...

Môn Toán trong Kỳ thi THPT Quốc Gia vào Đại học luôn làm các em căng thẳng, nội dung thi tập trung chủ yếu vào chương trình lớp 12 tuy nhiên khối lượng kiến thức tương đối nhiều.

Nhằm giúp các em học sinh lớp 12 ôn thi THPT quốc gia vào Đại học được tốt nhất, Hay Học Hỏi sẽ hệ thống lại toàn bộ các công thức Toán qua bài viết này.

* Các Công thức Toán ôn thi THPT quốc gia vào Đại học bao gồm:

  • Công thức lượng giác
  • Công thức đạo hàm
  • Công thức nguyên hàm
  • Công thức cấp số cộng
  • Công thức cấp số nhân
  • Công thức tính diện tích tam giác, hình tròn
  • Công thức tính thể tích
  • Công thức Tam thức bậc hai
  • Công thức tính Lũy thùy, Logarit, hàm mũ
  • Công thức bất đẳng thức Cauchy (Cô-si)
  • Công thức phương trình, bất phương trình mũ, logarit
  • Công thức phương trình bất phương trình chứa căn thức
  • Công thức phương trình bất phương trình chứa dấu giá trị tuyệt đối
  • Công thức tọa độ trong mặt phẳng,...
  • Công thức tọa độ trong không gian,...
  • Công thức Parabol, Hypebol, Đường tròn, Elip,...
  • Công thức chỉnh hợp, tổ hợp, nhị thức Newton,..

I. Công thức về Tam thức bậc hai

•  

1.

2. 

3. α là nghiệm của f(x) ⇔ f(α)=0.

4. 

5.

6.

7.

8.

9. 

10.

12.

II. Công thức Bất đẳng thức Cauchy (Cô-si).

1. thì , dấu "=" xảy ra ⇔ a=b.

2. thì , dấu "=" xảy ra ⇔ a=b=c.

III. Công thức cấp số cộng

1. Định nghĩa: Dãy số  gọi là cấp số cộng có công sai d nếu 

2. Số hạng thứ n của cấp số cộng là:

3. Tổng n số hạng đầu tiên của cấp số cộng:

 

IV. Công thức cấp số nhân

1. Định nghĩa: Dãy số  gọi là cấp số nhân có công bội q nếu

2. Số hạng thứ n của cấp số nhân:

3. Tổng n số hạng đầu tiên của cấp số nhân:

 

• Nếu  thì 

V. Công thức phương trình, bất phương trình chứa dấu giá trị tuyệt đối

1. 

2. 

3. 

4. 

5. 

VI. Công thức phương trình và bất phương trình chứa căn thức

1. 

2. 

3. 

4. 

5. 

VII. Công thức phương trình bất phương trình Logarit.

1. hoặc 

2.

VIII. Công thức phương trình và bất phương trình mũ

1. hoặc {a=1, f(x),g(x) xách định}.

2.

IX. Công thức tính Lũy thừa.

Với a,b>0

1. 

2. 

3. 

4. 

5. 

6. 

7. 

X. Công thức tính Logarit

• Với 0<N,N1,N2 và 0<a,b≠0 ta có:

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

XI. Công thức Lượng giác

A. Công thức lượng giác Các hệ thức cơ bản

1. 

2. 

3. 

4. 

5. 

6. 

B. Công thức lượng giác Các cung liên kết (Đối - Bù - Phụ - Hơn kém π, π/2) 

1. cos(-x) = cosx

2. sin(-x) = -sinx

3. tg(-x) = -tgx

4. cotg(-x) = -cotgx

5. sin(π-x)= sinx

6. cos(π-x)= -sinx

7. tg(π-x)= -tgx

8. cotg(π-x)= -cotgx

9. 

10. 

11.

12. 

13. sin(x+π)= -sinx

14. cos(x+π)= -cosx

15. tg(x+π)= tgx

16. cotg(x+π)= cotgx

17. 

18. 

19.

2. 

C. Công thức cộng (các cung lượng giác)

1. sin(x + y) = sinx.cosy + cosx.siny

2. sin(x - y) = sinx.cosy - cosx.siny

3. cos(x + y) = cosx.cosy - sinx.siny

4. cos(x - y) = cosx.cosy + sinx.siny

5. 

6. 

D. Công thức nhân đôi (các cung lượng giác).

1. sin2x = 2sinx.cosx

2. cos2x = cos2x - sin2x = 2cos2x - 1 = 1 - 2sin2x

3. 

E. Công thức hạ bậc

1. 

2. 

F. Công thức biểu diễn sinx, cosx, tgx theo t=tg(x/2)

Với  

  ;  ; 

G. Công thức nhân ba (cung lượng giác)

1. sin3x = 3sinx - 4sin3x

2. cos3x = 4cos3x - 3cosx

3. 

4. 

5. 

H. Công thức lượng giác biến đổi tích thành tổng

1.

2.

3.

I. Công thức lượng giác biến đổi tổng thành tích

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. 

12. 

XII. Công thức phương trình lượng giác

A. Công thức phương trình lượng giác cơ bản

1.

• 

2.

• 

• 

3.

4.

B. Công thức phương trình bậc n theo một hàm số lượng giác.

• Cách giải: Đặt t=sinx (hoặc cosx, tgx, cotgx) ta có phương trình:

 antn + an-1tn-1 + ... + a0 = 0.

- Nếu t = cosx hoặc t = sinx thì có thêm điều kiện -1≤t≤1.

C. Phương trình bậc nhất theo sinx và cosx

• Phương tình có dạng: asinx + bcosx = c , (a.b≠0)

- Điều kiện phương trình có nghiệm: a2 + b2 ≥ c2.

• Cách giải: Chia 2 vế của phương trình cho  và sau đó đưa về phương trình lượng giác cơ bản.

D. Phương trình đẳng cấp  bậc 2 đối với sinx và cosx

• Phương trình có dạng: a.sin2x + b.sinx.cosx + c.cos2x = 0

Cách giải:

 ° Xét cosx = 0 ⇔  có phải là nghiệm không?

 ° Xét cosx ≠ 0, chia 2 vế cho cosx và đặt t = tgx.

E. Phương trình lượng giác dạng:

 a.(sinx ± cosx) + b.sinx.cosx = c

Cách giải: Đặt t = sinx ± cosx = 

 hoặc  sau đó giải phương trình bậc 2 theo t.

XIII. Công thức hệ thức lượng trong tam giác.

A. Công thức hàm số cosin:

1. a2 = b2 + c2 - 2bc.cosA

2. b2 = a2 + c2 - 2ac.cosB

3. c2 = a2 + b2 - 2ab.cosC

B. Công thức hàm số sin:

 

C. Công thức tính độ dài trung tuyến trong tam giác:

   

D. Công thức tính diện tích tam giác:

1.

2.

3.

4.

Lưu ý: trong đó p là nửa chu vi, r bán kính đường tròn nội tiếp tam giác, R bán kính đường tròn ngoại tiếp tam giác.

XIV. Công thức tính Đạo hàm

A. Công thức đạo hàm các hàm cơ bản

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

B. Công thức đạo hàm của hàm hợp

1.

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9.

10. 

11. 

XV. Công thức tính Nguyên hàm

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

XVI. Công thức diện tích hình phẳng - thể tích vật thể tròn xoay:

• Viết phương trình các đường giới hạn hình phẳng.

Chọn công thức để tính diện tích:

  hoặc 

Chọn công thức để tính thể tích:

- Hình phẳng quay quanh Ox: 

- Hình phẳng quay quanh Oy:

• Biến x thì cần là x = a; x = b cho trong giả thiết hoặc hoành độ các giao điểm

• Biến y thì cần là y = c; y = d cho trong giả thiết hoặc tung độ các giao điểm

XVII. Công thức cho phương pháp tọa độ trong mặt phẳng:

Với  

* Các công thức phương trình đường thẳng

a) Phương trình đường thẳng Δ

 - Phương trình tổng quát của đường thẳng: Ax + By + C = 0;

 (véc-tơ pháp tuyến )

 - Phương trình tham số của đường thẳng: 

 (véc-tơ chỉ phương  và đi qua điểm M0(x0;y0)).

 - Phương trình chính tắc của đường thẳng: 

 - Phương trình đoạn chắn (Δ qua A(a;0); B(0;b)): 

b) Công thức tính góc φ (00 ≤ φ ≤ 900) giữa hai đường thẳng

• Cho 2 đường thẳng: Ax + By + C = 0 và A'x + B'y + C' = 0.

 

c) Khoảng cách từ điểm M0(x0;y0) đến đường thẳng Δ:

 

d) Phương trình đường phân giác của góc tạo bởi 2 đường thẳng

 

e) Hai điểm M1(x1;y1) và M2(x2;y2) nằm cùng một phía so với đường thẳng Δ ⇔ t1.t2>0.

 - Hai điểm M1(x1;y1) và M2(x2;y2) nằm khác phía so với đường thẳng Δ ⇔ t1.t2<0.

 

XVIII. Các công thức đường tròn

• Phương trình đường tròn:

 ° Dạng 1: Phương trình đường trong (C) có tâm I(a,;b) và bán kính R

 (x - a)2 + (y - b)2 = R2

 ° Dạng 2: Phương trình có dạng: x2 + y2 - 2ax - 2by + c = 0.

 - Với điều kiện a2 + b2 - c> 0 là phương trình đường tròn (C) có tâm I(a;b) và bán kính 

• Phương tích của một điểm M0(x0,y0) đối với một đường tròn:

 

XIX. Các công thức Elip

• Phương trình chính tắc của Elip (E): 

 

• Tiêu điểm: F1(-c;0), F2(c;0)

• Đỉnh trục lớp: A1(-a;0), A2(a;0)

• Đỉnh trục bé: B1(0;-b), B2(0;b); Tâm sai: 

• Phương trình đường chuẩn: 

• Phương trình tiếp tuyến của Elip tại M(x0;y0) ∈ (E): 

• Điều kiện tiếp xúc của (E) và (Δ): Ax + By + C = 0 là: A2a2 + B2b2 = C2

XX. Công thức Hypebol

• Phương trình chính tắc của Hypebol:

• Tiêu điểm: F1(-c;0), F2(c;0)

• Đỉnh: A1(-a;0), A2(a;0); Tâm sai: 

• Phương trình đường chuẩn: 

• Phương trình tiệm cận: 

• Phương  trình tiếp tuyến của Hypebol tại M(x0;y0) ∈ (H):

• Điều kiện tiếp xúc của (H) và (Δ): Ax + By + C = 0 là: A2a2 - B2b2 = C(C≠0).

XXI. Công thức Parabol:

• Phương trình chính tắc của Parabol (P): y2 = 2px

• Tiêu điểm: 

• Phương trình đường chuẩn: 

• Phương trình tiếp tuyến với (P) tại M(x0;y0)∈(P ): y0y = p(x0 + x)

• Điều kiện tiếp xúc của (P) và (Δ): Ax + By + C = 0 là: 2AC = B2p

XXII. Công thức tính tọa độ trong không gian

1. Công thức tính Tích có hướng của hai véc-tơ:

a) Định nghĩa:  và

 

b) Các bài tập vận dụng véc-tơ có hướng (ứng dụng của véc-tơ có hướng).

•  cùng phương ⇔ 

•  đồng phẳng ⇔ 

• 

• ABCD là tứ diện ⇔

2. Công thức mặt phẳng trong không gian

a) Phương trình mặt phẳng (α):

- Phương trình tổng quát của mặt phẳng: Ax + By + Cz + D = 0

 

- Phương trình đoạn chắn của mặt phẳng: 

 (Mặt phẳng (α) đi qua 3 điểm A(a;0;0), B(0;b;0) và C(0;0;c)).

b) Góc giữa hai mặt phẳng

 (α): Ax + By + Cz + D = 0

 (β): A'x + B'y + C'z + D' = 0

 

c) Khoảng cách từ một điểm M0(x0;y0;z0) đến mặt phẳng (α):

 

3. Công thức phương trình đường thẳng trong không gian

a) Phương trình đường thẳng trong không gian:

• Phương trình chính tắc của đường thẳng: 

• Phương trình tham số của Δ đi qua M0(x0;y0;z0) và có véc-tơ chỉ phương  là: 

• Phương trình tổng quát của đường thẳng:  với (A:B:C ≠ A':B':C')

b) Góc giữa hai đường thẳng

c) Khoảng cách từ điểm A đến đường thẳng Δ (Δ có VTCP  và qua M)

 

d) Khoảng cách giữa hai đường thẳng chéo nhau

- Δ có VTCP  và qua M, Δ' có VTCP  và qua M' 

 

e) Góc giữa đường thẳng Δ và mặt phẳng (α):

 

4. Công thức Phương trình mặt cầu

a) Phương trình mặt cầu:

Dạng 1: Phương trình mặt cầu (S) có tâm I(a;b;c) và  bán kính R:

 (x - a)2 + (y - b)2 + (y - c)2 = R2

Dạng 2: Phương trình mặt cầu (S) dạng:

 x2 + y2 + z2 - 2ax - 2by - 2cz + d = 0

- Với điều kiện a2 + b2 + c2 - d > 0 là phương trình mặt cầu có tâm I(a;b;c) và bán kính .

b) Sự tương giao giữa mặt cầu và mặt phẳng:

•  ⇔ (α) giao (S) theo đường tròn (C)

 - Phương trình (C): 

 - Tâm H của (C) là hình chiếu của tâm I(a;b;c) lên mặt phẳng (α)

 - Bán kính của (C): 

 ⇔ (α) tiếp xúc với (S)

•  ⇔ (α) ∩ (S) = ∅

XXIII. Công thức Chỉnh hợp, Tổ hợp, Giai thừa và nhị thức Newton

• Tính chất tổ hợp:   

• Công thức tổ hợp:  

• Công thức chỉnh hợp: 

• Công thức tính giai thừa: 

• Nhị thức Newton:

 °

 °

 °

Hy vọng với phần tổng hợp Công thức toán ôn thi THPT vào Đại học về nội dung lượng giác, đạo hàm, nguyên hàm, cấp số cộng, cấp số nhân,... ở trên giúp ích cho các em. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi quan trọng này. Mọi thắc mắc và góp ý các em vui lòng để lại bình luận dưới bài viết để HayHocHoi.Vn ghi nhận và hỗ trợ.

Đánh giá & nhận xét

captcha
...
nguyễn thanh tùng
cho em xin file ạ
Trả lời -
04/09/2019 - 16:12
...
Admin
Chào em, BQT sẽ cố gắng gửi em sớm nhé!
08/09/2019 - 09:04
captcha
Xem thêm bình luận
1 trong số 1