Chào các em! Hôm nay chúng ta sẽ cùng giải Bài 1.2 trang 11 trong sách giáo khoa Toán 10, tập 1, bộ sách Kết nối tri thức. Bài tập này là một bài thực hành quan trọng, giúp các em củng cố khả năng xác định tính đúng, sai của một mệnh đề. Đây là một kỹ năng cơ bản và cần thiết trong logic toán học.
Xác định tính đúng sai của mỗi mệnh đề sau:
a) π > 10/3
b) Phương trình 3x + 7 = 0 có nghiệm
c) Có ít nhất một số cộng với chính nó bằng 0
d) 2 022 là hợp số.
Để xác định tính đúng, sai của một mệnh đề, các em cần dựa vào kiến thức toán học và thực tế.
Đối với mệnh đề toán học:
Câu a): So sánh giá trị của π và 310.
Câu b): Giải phương trình 3x+7=0 để xem nó có nghiệm hay không.
Câu c): Tìm một số nào đó cộng với chính nó bằng 0. Nếu tìm được, mệnh đề là đúng.
Đối với mệnh đề thực tế:
Câu d): Dựa vào định nghĩa hợp số để kiểm tra. Hợp số là số tự nhiên lớn hơn 1, có nhiều hơn hai ước (tức là ngoài 1 và chính nó còn có các ước khác).
a) Mệnh đề: π>10/3
Ta có giá trị gần đúng của π≈3,14159.
Ta có giá trị gần đúng của 10/3≈3,33333.
Vì 3,14159<3,33333, nên π<10/3.
Kết luận: Mệnh đề này là SAI.
b) Mệnh đề: Phương trình 3x+7=0 có nghiệm.
Ta giải phương trình:
3x+7=0
3x=−7
x=−7/
Phương trình có nghiệm là x=−7/3.
Kết luận: Mệnh đề này là ĐÚNG.
c) Mệnh đề: Có ít nhất một số cộng với chính nó bằng 0.
Ta tìm một số thỏa mãn điều kiện đó.
Ta có: 0+0=0.
Kết luận: Mệnh đề này là ĐÚNG.
d) Mệnh đề: 2022 là hợp số.
Hợp số là số tự nhiên lớn hơn 1 và có ít nhất một ước số khác 1 và chính nó.
Ta thấy số 2022 có tận cùng là 2, nên nó chia hết cho 2.
Vì 2022 chia hết cho 2 (ngoài ước 1 và 2022), nên 2022 là hợp số.
Kết luận: Mệnh đề này là ĐÚNG.
Qua bài tập này, các em đã rèn luyện được khả năng đánh giá một mệnh đề và xác định tính đúng, sai của nó một cách chính xác. Đây là một kỹ năng quan trọng, giúp các em tư duy logic và giải quyết các bài toán toán học tốt hơn.
• Xem thêm: