Bài tập 7.11, trang 42 SGK Toán 11 Tập 2 (Kết nối tri thức), là bài toán quan trọng về Hình học không gian, tập trung vào việc xác định góc giữa đường thẳng và mặt phẳng và hình chiếu vuông góc trong hình chóp có cạnh bên vuông góc với đáy ($\mathbf{SA \perp (ABCD)}$).
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA ⊥ (ABCD) và $SA = a\sqrt{2}$
a) Tính góc giữa SC và mặt phẳng (ABCD).
b) Tính góc giữa BD và mặt phẳng (SAC).
c) Tìm hình chiếu của SB trên mặt phẳng (SAC).
Phần a (Góc giữa đường thẳng và mặt phẳng): Góc giữa $d$ và $(\alpha)$ là góc giữa $d$ và hình chiếu $d'$ của nó trên $(\alpha)$. $\text{Góc}(SC, (ABCD)) = \widehat{SCA}$.
Phần b (Góc đặc biệt): Nếu đường thẳng $d$ vuông góc với mặt phẳng $(\alpha)$, thì $\text{Góc}(d, (\alpha)) = 90^\circ$. Ta chứng minh $BD \perp (SAC)$.
Phần c (Hình chiếu): Hình chiếu của đoạn $SB$ trên $(SAC)$ là đoạn $S'B'$, với $S', B'$ là hình chiếu của $S, B$ trên $(SAC)$.
Ta có hình minh hoạ như sau:

a) Vì SA ⊥ (ABCD) nên A là hình chiếu của S trên mặt phẳng (ABCD).
⇒ AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó góc giữa SC và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng AC và SC,
Mà $(AC, SC) = \widehat{SCA}$
Vì ABCD là hình vuông cạnh a nên ta có:
$AC=\sqrt{AB^2+BC^2}=a\sqrt{2}$
Vì SA ⊥ (ABCD) nên SA ⊥ AC.
Xét tam giác SAC vuông tại A và $SA = AC = a\sqrt{2}$ nên tam giác SAC vuông cân tại A,
$\Rightarrow \widehat{SCA}=45^0$
Vậy góc giữa SC và mặt phẳng (ABCD) bằng 45°.
b) Vì SA ⊥ (ABCD) nên SA ⊥ BD.
Mà ABCD là hình vuông nên AC ⊥ BD.
Vì SA ⊥ BD và AC ⊥ BD nên BD ⊥ (SAC).
⇒ Góc giữa BD và mặt phẳng (SAC) bằng 90°.
c) Gọi O là giao điểm của AC và BD và ABCD là hình vuông, suy ra BO ⊥ AC.
Mà SA ⊥ (ABCD) nên SA ⊥ BO.
Vì SA ⊥ BO và BO ⊥ AC nên BO ⊥ (SAC), suy ra O là hình chiếu của B trên mặt phẳng (SAC).
Có S là hình chiếu của S trên mặt phẳng (SAC).
⇒ SO là hình chiếu của SB trên mặt phẳng (SAC).
Như vậy, ta có kết quả sau:
| Yêu cầu | Phương pháp | Kết quả |
| a) Góc giữa $SC$ và $(ABCD)$ | $\tan(\widehat{SCA})$ $= \frac{SA}{AC}$ $= \frac{a\sqrt{2}}{a\sqrt{2}}=1$ | $\mathbf{45^\circ}$ |
| b) Góc giữa $BD$ và $(SAC)$ | Chứng minh $BD \perp (SAC)$ (vì $BD \perp AC, BD \perp SA$) | $\mathbf{90^\circ}$ |
| c) Hình chiếu của $SB$ trên $(SAC)$ | Hình chiếu của $B$ là $O$ (tâm hình vuông) | $\mathbf{SO}$ |
• Xem thêm: