Bài 7.30 trang 63 Toán 11 tập 2 Kết nối tri thức

13:57:0724/01/2024

Hướng dẫn giải bài 7.30 trang 63 Toán 11 tập 2 Kết nối tri thức SGK chi tiết dễ hiểu để học sinh tham khảo giải Toán 11 Kết nối tri thức (KNTT) tập 2 giỏi hơn.

Bài 7.30 trang 63 Toán 11 Tập 2 Kết nối tri thức:

Cho khối chóp đều S.ABCD, đáy có cạnh 6 cm. Tính thể tích của khối chóp đó trong các trường hợp sau:

a) Cạnh bên tạo với mặt đáy một góc bằng 60°.

b) Mặt bên tạo với mặt đáy một góc bằng 45°.

Giải bài 7.30 trang 63 Toán 11 Tập 2 Kết nối tri thức:

a) Cạnh bên tạo với mặt đáy một góc bằng 60°.

Ta có hình minh hoạ như sau:

Giải bài 7.30 trang 63 Toán 11 Tập 2 Kết nối tri thức

Gọi O là giao điểm của AC và BD.

Vì S.ABCD là khối chóp đều nên SO ⊥ (ABCD).

Khi đó OC là hình chiếu của SC trên mặt phẳng (ABCD).

Và đó góc giữa cạnh bên SC và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng OC và SC,

mà (OC, SC) =  = 60o.

Xét tam giác ABC vuông tại B, có

Vì ABCD là hình vuông nên O là trung điểm của AC,

Xét tam giác SOC vuông tại O, có

SO = OC . tan60°

Khi đó:

 

b) Mặt bên tạo với mặt đáy một góc bằng 45°.

Ta có hình minh hoạ như sau:

Giải bài 7.30 trang 63 Toán 11 Tập 2 Kết nối tri thức

Kẻ OE ⊥ CD tại E.

Vì SO ⊥ (ABCD) nên SO ⊥ CD mà OE ⊥ CD nên CD ⊥ (SOE),

⇒ CD ⊥ SE.

Khi đó góc giữa hai mặt phẳng (SCD) và (ABCD) bằng góc giữa hai đường thẳng OE và SE,

mà (OE, SE) =  = 45o.

Xét tam giác SOE vuông tại O, có nên ΔSOE vuông cân tại O,

⇒ SO = OE.

Xét ΔBCD, có OE // BC (vì cùng vuông góc với CD),

mà O là trung điểm của BD nên E là trung điểm của CD,

Do đó OE là đường trung bình của ΔBCD.

⇒ OE = BC/2 = 6/2 = 3(cm).

⇒ SO = 3 cm.

Vậy, ta có:

Đánh giá & nhận xét

captcha
Tin liên quan