Hướng dẫn Giải bài 7.34 trang 58 Toán 10 Kết nối tri thức tập 2 SGK chi tiết dễ hiểu để học sinh tham khảo giải Toán 10 Kết nối tri thức tập 2 tốt hơn, giỏi hơn.
Bài 7.34 trang 58 Toán 10 Tập 2 Kết nối tri thức:
Cho đường tròn (C) có phương trình x2 + y2– 4x + 6y – 12 = 0.
a) Tìm tọa độ tâm I và bán kính R của (C).
b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.
Giải bài 7.34 trang 58 Toán 10 Tập 2 Kết nối tri thức:
a) Ta có: x2 + y2 – 4x + 6y – 12 = 0 ⇔ x2 + y2 – 2 . 2 . x – 2 . (– 3) . y – 12 = 0.
Có các hệ số: a = 2, b = – 3, c = – 12.
Do đó, đường tròn (C) có tâm I(2; – 3) và bán kính là:
b) Vì 52 + 12– 4 . 5 + 6 . 1 – 12 = 0 nên điểm M(5; 1) thuộc (C).
Tiếp tuyến d của (C) tại M có vectơ pháp tuyến là:
và đi qua M(5; 1) nên có phương trình là:
3(x – 5) + 4(y – 1) = 0
⇔ 3x + 4y – 19 = 0.
Với nội dung Giải bài 7.34 trang 58 Toán 10 tập 2 Kết nối tri thức chi tiết, dễ hiểu ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải Toán 10 tập 2 Kết nối tri thức. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.
• Xem thêm Giải Toán 10 Tập 2 Kết nối tri thức