Bài 7.11 SGK Toán 11 Tập 2 Kết nối tri thức

08:43:1118/02/2025

Lời giải bài 7.11 SGK Toán 11 Tập 2 Kết nối tri thức chi tiết dễ hiểu để các em học sinh tham khảo

Bài 7.11 SGK Toán 11 Tập 2 Kết nối tri thức

Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA ⊥ (ABCD) và SA = a 

a) Tính góc giữa SC và mặt phẳng (ABCD).

b) Tính góc giữa BD và mặt phẳng (SAC).

c) Tìm hình chiếu của SB trên mặt phẳng (SAC).

Giải bài 7.11 SGK Toán 11 Tập 2 Kết nối tri thức

Ta có hình minh hoạ như sau:

Giải bài 7.11 trang 42 Toán 11 Tập 2 Kết nối tri thức

a) Vì SA ⊥ (ABCD) nên A là hình chiếu của S trên mặt phẳng (ABCD).

⇒ AC là hình chiếu của SC trên mặt phẳng (ABCD).

Khi đó góc giữa SC và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng AC và SC,

Mà (AC, SC) = 

Vì ABCD là hình vuông cạnh a nên ta có:

Vì SA ⊥ (ABCD) nên SA ⊥ AC.

Xét tam giác SAC vuông tại A và SA = AC = a  nên tam giác SAC vuông cân tại A,

Vậy góc giữa SC và mặt phẳng (ABCD) bằng 45°.

b) Vì SA ⊥ (ABCD) nên SA ⊥ BD.

Mà ABCD là hình vuông nên AC ⊥ BD.

Vì SA ⊥ BD và AC ⊥ BD nên BD ⊥ (SAC).

⇒ Góc giữa BD và mặt phẳng (SAC) bằng 90°.

c) Gọi O là giao điểm của AC và BD và ABCD là hình vuông, suy ra BO ⊥ AC.

Mà SA ⊥ (ABCD) nên SA ⊥ BO.

Vì SA ⊥ BO và BO ⊥ AC nên BO ⊥ (SAC), suy ra O là hình chiếu của B trên mặt phẳng (SAC).

Có S là hình chiếu của S trên mặt phẳng (SAC).

⇒  SO là hình chiếu của SB trên mặt phẳng (SAC).

Đánh giá & nhận xét

captcha
Tin liên quan