Lời giải bài 6.11 SGK Toán 10 Tập 2 Kết nối tri thức chi tiết dễ hiểu để các em học sinh tham khảo
Gọi (P) là đồ thị hàm số bậc hai y = ax2 + bx + c. Hãy xác định dấu của hệ số a và biệt thức ∆, trong mỗi trường hợp sau:
a) (P) nằm hoàn toàn phía trên trục hoành;
b) (P) nằm hoàn toàn phía dưới trục hoành;
c) (P) cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía dưới trục hoành;
d) (P) tiếp xúc với trục hoành và nằm phía trên trục hoành.
a) Vì (P) nằm hoàn toàn phía trên trục hoành nên:
+ Bề lõm của đồ thị phải quay lên trên, do đó hệ số a > 0.
+ Giá trị của hàm số y > 0 nên biệt thức ∆ > 0 (vì ∆ là giá trị của y tại hoành độ của đỉnh).
b) Vì (P) nằm hoàn toàn phía dưới trục hoành nên:
+ Bề lõm của đồ thị phải quay xuống dưới, do đó hệ số a < 0.
+ Giá trị của hàm số y < 0 nên biệt thức ∆ < 0 (vì ∆ là giá trị của y tại hoành độ của đỉnh).
c) Vì (P) cắt trục hoành tại hai điểm phân biệt nên phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt, do đó biệt thức ∆ > 0.
(P) có đỉnh nằm phía dưới trục hoành và cắt trục hoành tại 2 điểm phân biệt nên bề lõm của đồ thị phải quay lên trên, do đó hệ số a > 0.
d) (P) tiếp xúc với trục hoành nên nên phương trình ax2 + bx + c = 0 có nghiệm kép,
Vì vậy biệt thức ∆ = 0.
(P) nằm phía trên trục hoành nên bề lõm của đồ thị phải quay lên trên, do đó hệ số a > 0.
Với lời giải bài 6.11 SGK Toán 10 Tập 2 kết nối tri thức ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải Toán 10 tập 2 Kết nối tri thức. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.
• Xem hướng dẫn giải bài tập SGK Toán 10 Tập 2 Kết nối tri thức
Bài 6.7 SGK Toán 10 Tập 2 Kết nối tri thức: Vẽ các đường parabol sau: a) y = x2 – 3x + 2;...