Bài 3.17 thuộc chương 3 SGK Toán 10 Tập 1 bộ sách Kết nối tri thức với cuộc sống, dưới đây là lời giải chi tiết, dễ hiểu để các em học tốt môn Toán.
Cho tam giác ABC. Chứng minh rằng:
a) Nếu góc A nhọn thì b2 + c2 > a2;
b) Nếu góc A tù thì b2 + c2 < a2;
c) Nếu góc A vuông thì b2 + c2 = a2.
Xét ΔABC, có:
Theo định lí cos, ta có: a2 = b2 + c2 – 2bc.cosA
a) Nếu góc A nhọn thì cosA > 0 ⇒ 2bccosA > 0 ⇒ - 2bccosA < 0
Vì vậy: a2 = b2 + c2 – 2bc.cosA < b2 + c2
Vậy b2 + c2 > a2
b) Nếu góc A tù thì cosA > 0 ⇒ 2bccosA < 0 ⇒ - 2bccosA > 0
Vì vậy: a2 = b2 + c2 – 2bc.cosA > b2 + c2
Vậy b2 + c2 < a2.
c) Nếu góc A vuông thì cosA = 0 ⇒ 2bccosA = 0
Vì vậy: a2 = b2 + c2 – 2bc.cosA = b2 + c2
Vậy b2 + c2 = a2.
Hy vọng với lời giải bài 3.17 SGK Toán 10 Tập 1 Kết nối tri thức ở trên đã giúp các em hiểu và nắm vững phần kiến thức này. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để Hay Học Hỏi ghi nhận và hỗ trợ, chúc các em học tốt.
• Xem Giải bài tập Toán 10 Tập 1 SGK Kết nối tri thức