Bài 2.15 trang 37 Toán 9 tập 1 Kết nối tri thức: Bất Đẳng Thức & Tính Chất

09:05:1026/01/2024

Bài 2.15 trang 37 Toán 9 Tập 1 thuộc chương "Bất đẳng thức". Bài toán này giúp các em củng cố kiến thức về tính chất cơ bản của bất đẳng thức và cách vận dụng chúng để chứng minh các bất đẳng thức khác.

Đề bài

Cho a > b, chứng minh rằng

a) 4a + 4 > 4b + 3

b) 1 - 3a < 3 - 3b

Phân tích và hướng dẫn giải:

Các tính chất bất đẳng thức cần nhớ

  • Cộng vào hai vế: Khi cộng cùng một số vào cả hai vế của bất đẳng thức, dấu của bất đẳng thức không đổi.

  • Nhân với số dương: Khi nhân cả hai vế của bất đẳng thức với một số dương, dấu của bất đẳng thức không đổi.

  • Nhân với số âm: Khi nhân cả hai vế của bất đẳng thức với một số âm, dấu của bất đẳng thức phải đổi chiều.

  • Tính chất bắc cầu: Nếu a>bb>c thì a>c.

2. Lời giải chi tiết

a) Chứng minh 4a+4b+3

Ta có giả thiết: a>b.

  • Nhân hai vế của bất đẳng thức với 4 (là số dương), dấu bất đẳng thức giữ nguyên: 4a>4b

  • Cộng 4 vào cả hai vế, dấu bất đẳng thức giữ nguyên: 4a+4b+4

  • Ta thấy 4>3, suy ra 4b+4b+3.

  • Áp dụng tính chất bắc cầu, từ 4a+4b+44b+4b+3, ta suy ra: 4a+4b+3 (điều phải chứng minh).

b) Chứng minh 1333b

Ta có giả thiết: a>b.

  • Nhân hai vế của bất đẳng thức với -3 (là số âm), dấu bất đẳng thức phải đổi chiều: 3a<3b

  • Cộng 3 vào cả hai vế, dấu bất đẳng thức giữ nguyên: 3333b

  • Ta thấy 1<3, do đó 13<33<33b.

  • Áp dụng tính chất bắc cầu, từ 13<33a33<33b, ta suy ra: 13<33b (điều phải chứng minh).

Đáp số:

a) 4a+4b+3

b) 1333b

Bài toán này giúp các em làm quen với việc chứng minh bất đẳng thức bằng các phép biến đổi cơ bản. Nắm vững các tính chất khi cộng, trừ, nhân, chia vào bất đẳng thức là chìa khóa để giải quyết các bài toán này một cách chính xác. Chúc các em học tốt!

» Xem thêm:

Bài 2.12 trang 37 Toán 9 Tập 1 Kết nối  tri thức: Giải các phương trình sau: a) 2(x + 1) = (5x - 1)(x + 1)...

Bài 2.13 trang 37 Toán 9 Tập 1 Kết nối  tri thức: Để loại bỏ x% một loại tảo độc khỏi một hồ nước, người ta ước tính chi phí cần bỏ ra là:...

Bài 2.14 trang 37 Toán 9 Tập 1 Kết nối  tri thức: Giải các phương trình sau: a) 1/(x + 2) - 2/(x2 - 2x + 4) = (x - 4)/(x3 + 8)...

Đánh giá & nhận xét

captcha
Tin liên quan