Hướng dẫn giải bài 4.45 trang 103 Toán 11 Tập 1 Kết nối tri thức nội dung SGK chi tiết dễ hiểu
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N lần lượt là trung điểm của cạnh AD, A'B'. Chứng minh rằng:
a) BD // B'D', (A'BD) // (CB'D') và MN // (BDD'B');
b) Đường thẳng AC' đi qua trọng tâm G của tam giác A'BD.
Ta có hình minh hoạ như sau:
a) Vì ABCD.A'B'C'D' là hình hộp nên các mặt của nó là hình bình hành và các cạnh bên AA', BB', CC', DD' đôi một song song và bằng nhau.
Xét tứ giác BDD'B' có BB' = DD' và BB' // DD' nên BDD'B' là hình bình hành.
Suy ra BD // B'D'. Do đó, BD // (CB'D').
Vì A'B'C'D' là hình bình hành nên A'D' // B'C' và A'D' = B'C'.
Vì BCC'B' là hình bình hành nên BC // B'C' và BC = B'C'.
Do đó, A'D' // BC và A'D' = BC nên A'D'CB là hình bình hành.
Suy ra A'B // D'C. Do đó, A'B // (CB'D').
Mặt phẳng (A'BD) chứa hai đường thẳng cắt nhau BD và A'B cùng song song với mặt phẳng (CB'D') nên (A'BD) // (CB'D').
Gọi E là giao điểm hai đường chéo AC và BD của hình bình hành ABCD. Khi đó E là trung điểm của AC và BD. Lại có M là trung điểm của AD nên ME là đường trung bình của tam giác ABD,
⇒ ME // AB và ME = AB (*)
Vì N là trung điểm của A'B' nên NB' = A'B'.
Mà AB = A'B' và AB // A'B'
⇒ NB' // AB và NB' = AB (**)
Từ (*) và (**) ⇒ ME // NB' và ME = NB'
⇒ Tứ giác MEB'N là hình bình hành.
⇒ MN // B'E.
Vì E thuộc BD nên E thuộc mặt phẳng (BDD'B'), do đó đường thẳng B'E nằm trong mặt phẳng (BDD'B').
Vậy MN // (BDD'B').
b) Vì E thuộc AC nên E thuộc mặt phẳng (ACC'A').
Trong mặt phẳng (ACC'A') gọi G là giao điểm của A'E và AC', gọi I là giao điểm của AC' và AC.
Mà E thuộc BD nên E thuộc mặt phẳng (A'BD) nên A'E nằm trong mặt phẳng (A'BD). Vì G thuộc A'E nên G thuộc mặt phẳng (A'BD). Do đó, G là giao điểm của AC' và mặt phẳng (A'BD).
Tứ giác ACCA' có AA' = CC' và AA' // CC' nên ACC'A' là hình bình hành.
⇒ I là giao điểm của hai đường chéo AC' và A'C nên I là trung điểm của AC' và A'C.
Xét ΔAA'C có AI, A'E là các đường trung tuyến và G là giao của AI và A'E (do G là giao của AC' và A'E) nên G là trọng tâm của ΔAA'C.
Xét ΔA'BD có A'E là đường trung tuyến (do E là trung điểm của BD) và nên G là trọng tâm của ΔA'BD.
Vậy đường thẳng AC' đi qua trọng tâm G của ΔA'BD.
Với nội dung bài 4.45 trang 103 Toán 11 tập 1 Kết nối tri thức cùng cách giải bài 4.45 trang 103 Toán 11 Kết nối tập 1 chi tiết, dễ hiểu. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải Toán 11 tập 1 Kết nối tri thức. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.
• Xem hướng dẫn giải bài tập SGK Toán 11 Tập 1 Kết nối tri thức