Bài 5 trang 23 Toán 7 Tập 2 Chân trời sáng tạo

13:28:0104/01/2024

Bài toán này là ứng dụng thực tế của tính chất dãy tỉ số bằng nhau để tìm số học sinh của hai lớp khi biết tổng số học sinh và mối quan hệ tỉ lệ giữa hai lớp.

Đề bài:

Tổng số học sinh của hai lớp 7A và 7B là 77. Tìm số học sinh của mỗi lớp biết rằng số học sinh lớp 7A bằng 5/6 số học sinh lớp 7B.

Phân tích và Hướng dẫn giải:

Gọi số học sinh của hai lớp 7A và 7B lần lượt là x và y (học sinh; $x, y \in \mathbb{N}^*$).

  1. Thiết lập phương trình từ tổng số học sinh:

    $x + y = 77$
  2. Thiết lập dãy tỉ số:

    Số học sinh lớp $7A$ ($x$) bằng $\frac{5}{6}$ số học sinh lớp $7B$ ($y$):

    $x = \frac{5}{6} y \quad \implies \quad \frac{x}{5} = \frac{y}{6}$
  3. Áp dụng tính chất Dãy tỉ số bằng nhau với điều kiện $x + y = 77$.

Lời giải chi tiết:

Gọi x, y (học sinh) lần lượt là số học sinh của hai lớp 7A và 7B (x, y ∈ ℕ*).

Theo đề bài ta có: x + y = 77 và 

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Khi đó x = 5.7 = 35, y = 6.7 = 42 (thỏa mãn).

Vậy số học sinh của hai lớp 7A và 7B lần lượt là 35 học sinh và 42 học sinh.

Đánh giá & nhận xét

captcha
Tin liên quan