Hướng dẫn giải bài 3 trang 24 Toán 11 Tập 2 Cánh Diều nội dung SGK chi tiết dễ hiểu
Chọn ngẫu nhiên một số tự nhiên có hai chữ số. Tính xác suất của biến cố M:"Số tự nhiên có hai chữ số được viết ra chia hết cho 11 hoặc chia hết cho 12".
Ta có: Ω = {10; 11; 12; …; 99}.
Không gian mẫu của phép thử có phần tử, tức là n(Ω) = 90.
Xét các biến cố:
M: "Số tự nhiên có hai chữ số được viết ra chia hết cho 11 hoặc chia hết cho 12"
A: "Số tự nhiên có hai chữ số được viết ra chia hết cho 11"
B: "Số tự nhiên có hai chữ số được viết ra chia hết cho 12"
Khi đó M = A ∪ B và A ∩ B = ∅
Vì hai biến cố A và B xung khắc nên n(M) = n(A ∪ B) = n(A) + n(B).
Số các kết quả thuận lợi cho biến cố A là n(A) = 9.
Số các kết quả thuận lợi cho biến cố B là n(B) = 8.
Số các kết quả thuận lợi cho biến cố M là: n(M) = 9 + 8 = 17.
Vậy xác suất xảy ra của biến cố M là: 17/90.
Với nội dung bài 3 trang 24 Toán 11 tập 2 Cánh Diều cùng cách giải bài 3 trang 24 Toán 11 Cánh diều tập 2 chi tiết, dễ hiểu. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải Toán 11 tập 2 Cánh Diều. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.
• Xem hướng dẫn giải bài tập SGK Toán 11 Tập 2 Cánh Diều