Giải bài 2 trang 62 Toán 8 Tập 1 SGK Chân trời sáng tạo

13:49:1911/05/2023

Bài viết này sẽ hướng dẫn bạn giải chi tiết Bài 2 trang 62 sách giáo khoa Toán 8 tập 1, bộ sách Chân trời sáng tạo. Bài toán này là một ứng dụng thực tế của định lý Pythagore vào việc tính toán khoảng cách.

Đề bài:

Tính độ cao của con diều so với mặt đất (Hình 11).Bài 2 trang 62 Toán 8 Tập 1 SGK Chân trời sáng tạo

Phân tích và Hướng dẫn giải

Để tính độ cao của con diều so với mặt đất, chúng ta có thể hình dung bài toán dưới dạng một tam giác vuông. Dây diều chính là cạnh huyền, khoảng cách từ người chơi đến vị trí con diều trên mặt đất là một cạnh góc vuông, và độ cao của con diều so với mặt đất là cạnh góc vuông còn lại.

Chúng ta sẽ áp dụng định lý Pythagore để tìm độ dài cạnh góc vuông còn lại. Công thức của định lý Pythagore: Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.

c2=a2+b2

Từ đó, ta có thể tính một cạnh góc vuông nếu biết cạnh huyền và cạnh góc vuông còn lại: b2=c2a2

Trong bài toán này:

  • Độ dài dây diều (cạnh huyền) là 50 m.

  • Khoảng cách từ người chơi đến vị trí con diều trên mặt đất (cạnh góc vuông) là 25 m.

  • Độ cao của con diều so với mặt đất (cạnh góc vuông còn lại) là giá trị chúng ta cần tìm.

Lời giải chi tiết:

Đặt các điểm A, B, C như hình sau:

Giải bài 2 trang 62 Toán 8 Tập 1 SGK Chân trời sáng tạo

+ Áp dụng định lí Pythagore cho tam giác ABC vuông tại A, ta có:

 BC2 = AB2 + AC2.

⇒ AC2 = BC2 – AB2 = 502 – 252 

 = 2 500 – 625 = 1 875

Vậy độ cao của con diều so với mặt đất là:  (m).

Đánh giá & nhận xét

captcha
Tin liên quan