Giải bài 4.24 trang 94 Toán 11 tập 1 SGK Kết nối tri thức

08:17:0807/10/2023

Chào các em! Bài toán này là một ví dụ tuyệt vời về cách áp dụng định lý Thalès trong không gian để chứng minh các tỉ lệ giữa các đoạn thẳng. Bằng cách sử dụng các mặt phẳng song song, chúng ta có thể dễ dàng giải quyết bài toán một cách chính xác. Hãy cùng nhau khám phá nhé!

Đề bài:

Cho hình tứ diện SABC. Trên cạnh SA lấy các điểm A1, A2 sao cho AA1 = A1A2 = A2S. Gọi (P) và (Q) là hai mặt phẳng song song với mặt phẳng (ABC) và lần lượt đi qua A1, A2. Mặt phẳng (P) cắt các cạnh SB, SC lần lượt tại B1, C1. Mặt phẳng (Q) cắt các cạnh SB, SC lần lượt tại B­2, C2.

Chứng minh BB1 = B1B2 = B2S và CC1 = C1C2 = C2S.

Phân Tích và Hướng Dẫn Giải:

Để chứng minh các đẳng thức về độ dài, chúng ta sẽ sử dụng định lý Thalès trong không gian. Định lý này phát biểu rằng: Nếu ba mặt phẳng song song đôi một và cắt hai đường thẳng bất kỳ, thì chúng định ra trên hai đường thẳng đó các đoạn thẳng tương ứng tỉ lệ.

  1. Xác định các mặt phẳng song song: Ta có ba mặt phẳng (ABC), (P), và (Q) đôi một song song.

  2. Áp dụng Thalès trong không gian: Ta sẽ áp dụng định lý này cho ba mặt phẳng trên và các đường thẳng SA,SB,SC.

  3. Kết hợp các tỉ lệ: Dựa vào giả thiết AA1=A1A2=A2S, chúng ta sẽ suy ra các tỉ lệ tương ứng trên các cạnh SBSC.

  4. Kết luận: Từ các tỉ lệ đã chứng minh, ta suy ra các đẳng thức về độ dài cần tìm.

Lời giải chi tiết:

Ta có hình minh họa như sau:

Giải bài 4.24 trang 94 Toán 11 tập 1 Kết nối tri thức

Vì hai mặt phẳng (P) và (Q) song song với mặt phẳng (ABC) nên (P) // (Q)

⇒ Ba mặt phẳng (ABC), (P) và (Q) đôi một song song.

Theo định lí Thalés trong không gian, ta có:

 

Mà AA1 = A1A2 nên 

Vì vậy BB1 = B1B2 và CC1 = C1C2.

Sử dụng định lí Thalés ta cũng chứng minh được:

Mà A1A2 = A2S nên

Vậy BB1 = B1B2 = B2S và CC1 = C1C2 = C2S.

Đánh giá & nhận xét

captcha
Tin liên quan