Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng sang hai bên...
Bài 5 trang 13 Toán 10 Tập 2 SGK Chân trời sáng tạo: Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoát sang hai bên. Mặt cắt ngang của một con đường được mô tả bằng hàm số y = - 0,006x2 với gốc tọa độ đặt tại tim đường và đơn vị đo là mét như trong Hình 4. Với chiều rộng của đường như thế nào thì tim đường cao hơn lề đường không quá 15cm.
Giải bài 5 trang 13 Toán 10 Tập 2 SGK Chân trời sáng tạo:
Gọi A, H, B lần lượt là các điểm trên hình vẽ:
Đổi 15cm = 0,15 m
Để tim đường cao hơn lề đường không quá 15cm thì OH ≤ 0,15 hay – (– 0,006x2) ≤ 0,15
⇔ x2 – 25 ≥ 0
Xét tam thức bậc hai f(x) = x2 – 25 có ∆ = 02 – 4.(-25) = 100 > 0, a = 1 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = - 5 và x2 = 5.
Ta có bảng xét dấu:
⇒ f(x) không âm khi x ∈ [-5; 5].
Tương ứng x1, x2 lần lượt là hoành độ của các điểm A và B.
Khi đó AB = |x2 – x1| = |5 – (-5)| = 10.
Vậy độ rộng của đường là 10 m thì tim đường cao hơn lề đường không quá 15cm.
Hy vọng với lời giải bài 5 trang 13 Toán 10 Tập 2 SGK Chân trời Sáng tạo ở trên đã giúp các em hiểu và nắm vững phần kiến thức này. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để Hay Học Hỏi ghi nhận và hỗ trợ, chúc các em học tốt.
• Xem giải bài tập Toán 10 SGK tập 2 Chân trời sáng tạo cùng chuyên mục