Bài toán yêu cầu sắp xếp một tập hợp các số (bao gồm số thập phân, số nguyên âm, và số nguyên dương) theo thứ tự giảm dần (từ lớn nhất đến nhỏ nhất).
Hãy sắp xếp các số sau theo thứ tự giảm dần:
Để sắp xếp các số thập phân và số nguyên, ta thực hiện theo nguyên tắc cơ bản:
Phân loại: Sắp xếp theo thứ tự: Số dương $>$ Số $0$ $>$ Số âm.
So sánh trong nhóm số dương/số âm:
Trong nhóm số dương, số nào có giá trị tuyệt đối lớn hơn thì lớn hơn.
Trong nhóm số âm, số nào có giá trị tuyệt đối lớn hơn thì nhỏ hơn
Để sắp xếp các số theo thứ tự giảm dần, ta thực hiện như sau:
Chia thành 2 nhóm: nhóm số dương và nhóm số âm (số dương luôn lớn hơn 0 và lớn hơn số âm)
- Nhóm số dương:
- Nhóm số âm:
+) Đối với nhóm số dương:
Có:
Quy đồng hai phân số 3/5 và 8/13 (mẫu số chung là 65)
Vì 40>39 nên:
Do đó
+) Đối với nhóm số âm
Có:
Quy đồng các phân số: (mẫu chung là 12)
Vì −10 > −16 > −21 nên
hay
Do đó:
Từ đó suy ra:
Vậy các số được sắp xếp theo thứ tự giảm dần là:
Việc sắp xếp các số (số nguyên và số thập phân) theo thứ tự giảm dần được thực hiện theo nguyên tắc: số dương luôn lớn hơn số âm, và trong nhóm số âm, số nào có giá trị tuyệt đối nhỏ hơn thì số đó lớn hơn (gần $0$ hơn). Thứ tự giảm dần cuối cùng là: $8$; $0,6$; $0$; $-1,75$; $-4$; $-5$.
• Xem thêm:
Bài 3 trang 31 Toán 6 tập 2 SGK Chân trời sáng tạo: Tìm số đối của các số thập phân sau:...