Công thức tính trung vị, số trung bình, ý nghĩa của trung vị số trung bình và Mốt? Toán 10 chân trời tập 1 chương 6 bài 3

13:30:2125/11/2023

Lý thuyết Bài 3: Các đặc trưng đo xu thế trung tâm của mẫu số liệu chương 6 SGK Toán 10 Chân trời sáng tạo Tập 1. Nội dung về Công thức tính trung vị, số trung bình, ý nghĩa của trung vị số trung bình và Mốt.

Công thức tính trung vị, số trung bình, ý nghĩa của trung vị số trung bình và Mốt thế nào? câu trả lời sẽ có ngay trong nội dung bài viết này.

1. Số trung bình

1.1. Công thức tính số trung bình

• Giả sử ta có một mẫu số liệu là x1, x­2, …, xn.

Số trung bình (hay số trung bình cộng) của mẫu số liệu này, kí hiệu là , được tính bởi công thức:

• Giả sử mẫu số liệu được cho dưới dạng bảng tần số

Giá trị

x1

x2

xk

Tần số

n1

n2

nk

Khi đó, công thức tính số trung bình trở thành:

Trong đó n = n1 + n2 + … + nk. Ta gọi n là cỡ mẫu.

* Chú ý: Nếu kí hiệu   là tần số tương đối (hay còn gọi là tần suất) của x trong mẫu số liệu thì số trung bình còn có thể biểu diễn là:

* Ví dụ: Điểm số bài thực hành môn Toán của các bạn học sinh trong nhóm A là 10; 8; 7; 9; 5; 6, còn của các bạn nhóm B là 9; 6; 8; 5; 9; 5. Tính điểm trung bình của mỗi nhóm.

* Lời giải:

Điểm trung bình của nhóm A là:

Điểm trung bình của nhóm B là:

1.2. Ý nghĩa của số trung bình

Số trung bình của mẫu số liệu được dùng làm đại diện cho các số liệu của mẫu. Nó là một số đo xu thế trung tâm của mẫu đó.

* Ví dụ: Ở trong Ví dụ thuộc phần 1.1. trên, ta thấy điểm số trung bình của nhóm A cao hơn nhóm B (7,5 > 7,0), ta có thể nói rằng thành tích thực hành của nhóm A tốt hơn nhóm B.

2. Trung vị và tứ phân vị

2.1. Trung vị

2.1.1 Định nghĩa và cách tính số trung vị

Khi các số liệu trong mẫu số liệu chênh lệch nhau quá lớn, ta dùng một đặc trưng khác của mẫu số liệu, gọi là trung vị để so sánh các mẫu số liệu với nhau.

Trung vị được định nghĩa như sau:

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

x1 ≤ x2 ≤ … ≤ xn.

Trung vị của mẫu, kí hiệu là Me, là giá trị ở chính giữa dãy x1, x­­2, …, xn. Cụ thể:

- Nếu n = 2k + 1, k ∈ ℕ (tức n là số tự nhiên lẻ), thì trung vị của mẫu Me = xk + 1.

- Nếu n = 2k, k ∈ ℕ (tức n là số tự nhiên chẵn), thì trung vị của mẫu 

* Ví dụ: Tính các trung vị của điểm thực hành môn Toán của các bạn học sinh trong nhóm A là 10; 5; 7; 9; 8; 6, và nhóm B là 9; 9; 8; 7; 6; 8. Tính điểm trung bình của mỗi nhóm.

* Lời giải:

+ Sắp xếp điểm số của mỗi bạn trong nhóm A theo thứ tự không giảm, ta được:

5; 6; 7; 8; 9; 10

Vì cỡ mẫu bằng 6 nên trung vị của nhóm A là trung bình cộng của số liệu thứ 3 và thứ 4 của dãy trên, tức là Me = (7 + 8) = 7,5.

+ Sắp xếp điểm số của mỗi bạn trong nhóm B theo thứ tự không giảm, ta được:

6; 7; 8; 8; 9; 9

Vì cỡ mẫu bằng 6 nên trung vị của nhóm B là trung bình cộng của số liệu thứ 3 và thứ 4 của dãy trên, tức là Me = (8 + 8) = 8.

2.1.2 Ý nghĩa của số trung vị

Trung vị được dùng để đo xu thế trung tâm của mẫu số liệu. Trung vị là giá trị nằm ở chính giữa của mẫu số liệu theo nghĩa: luôn có ít nhất 50% số liệu trong mẫu lớn hơn hoặc bằng trung vị và ít nhất 50% số liệu trong mẫu nhỏ hơn hoặc bằng trung vị. Khi trong mẫu xuất hiện thêm một giá trị rất lớn hoặc rất nhỏ thì số trung bình sẽ bị thay đổi đáng kể nhưng trung vị thì ít thay đổi.

* Ví dụ: Bảng sau thống kê số sách mỗi bạn học sinh Tổ 1 và Tổ 2 đã đọc ở thư viện trường trong một tháng:

ý nghĩa của trung vị

a) Trung bình mỗi bạn Tổ 1 và mỗi bạn Tổ 2 đọc bao nhiêu quyển sách ở thư viện trường trong tháng đó?

b) Em hãy thảo luận với các bạn trong nhóm xem tổ nào chăm đọc sách ở thư viện hơn.

* Lời giải:

a) Trung bình mỗi bạn Tổ 1 đọc số quyển sách ở thư viện trong tháng trên là:

Trung bình mỗi bạn Tổ 2 đọc số quyển số ở thư viện trong tháng trên là:

b) Vì 4,4 > 4 nên theo số trung bình, các bạn Tổ 1 đọc sách chăm hơn.

Nếu dựa vào số trung bình để đánh giá xem tổ nào chăm đọc sách hơn trong bài này thì không phù hợp, do có một số liệu trong mẫu số liệu của Tổ 1 quá lớn so với các số liệu còn lại. Ta sử dụng trung vị để so sánh độ chăm học giữa hai tổ.

+ Sắp xếp mẫu số liệu theo thứ tự không giảm của Tổ 1:

1; 1; 1; 2; 2; 2; 3; 3; 25

Vì cỡ mẫu n1 = 9 là số lẻ, nên trung vị của mẫu số liệu Tổ 1 là Me1 = 2.

+ Sắp xếp mẫu số liệu theo thứ tự không giảm của Tổ 2:

3; 3; 4; 4; 4; 4; 5; 5

Vì cỡ mẫu n2 = 8 là số chẵn, nên trung vị của mẫu số liệu Tổ 2 là Me2 = (4+4) = 4.

Do đó ta có: Me2 > Me1.

Vậy theo trung vị, các bạn Tổ 2 chăm đọc sách ở thư viện hơn Tổ 1.

2.2. Tứ phân vị

Trung vị chia mẫu thành hai phần. Trong thực tế người ta cũng quan tâm đến trung vị của mỗi phần đó. Ba trung vị này được gọi là tứ phân vị của mẫu.

Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

x1 ≤ x2 ≤ … ≤ xn.

Tứ phân vị của một mẫu số liệu gồm ba giá trị, gọi là tứ phân vị thứ nhất, thứ hai và thứ ba (lần lượt kí hiệu là Q1, Q2, Q­3). Ba giá trị này chia tập hợp dữ liệu đã sắp xếp thành bốn phần đều nhau. Cụ thể:

- Giá trị tứ phân vị thứ hai, Q2, chính là số trung vị của mẫu.

- Giá trị tứ phân vị thứ nhất, Q1, là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ).

- Giá trị tứ phân vị thứ ba, Q3, là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ).

Ý nghĩa của tứ phân vị

Các điểm tứ phân vị Q1, Q2, Q3 chia mẫu số liệu đã sắp xếp theo thứ tự từ nhỏ đến lớn thành bốn phần, mỗi phần chia khoảng 25% tổng số liệu đã thu thập được.

Tứ phân vị thứ nhất Q1 còn được gọi là tứ phân vị dưới và đại diện cho nửa mẫu số liệu phía dưới. Tứ phân vị thứ ba Q3, còn được gọi là tứ phân vị trên và đại diện cho nửa mẫu số liệu ở phía trên.

Ý nghĩa của tứ phân vị

* Ví dụ: Tìm tứ phân vị của mẫu số liệu sau: 3; 5; 6; 13; 25; 17; 19.

* Lời giải:

Sắp xếp các số liệu theo thứ tự không giảm ta được:

3; 5; 6; 13; 17; 19; 25.

Vì cỡ mẫu n = 7, là số lẻ, nên giá trị tứ phân vị thứ hai là Q2 = 13.

Tứ phân vị thứ nhất là trung vị của mẫu: 3; 5; 6. Do đó Q1 = 5.

Tứ phân vị thứ ba là trung vị của mẫu: 17; 19; 25. Do đó Q3 = 19.

3. Mốt

Cho mẫu số liệu dưới dạng bảng tần số. Giá trị có tần số lớn nhất được gọi là mốt của mẫu số liệu và kí hiệu là Mo.

Ý nghĩa của mốt: Mốt đặc trưng cho giá trị xuất hiện nhiều nhất trong mẫu.

* Chú ý: Một mẫu số liệu có thể có rất nhiều mốt. Khi tất cả các giá trị trong mẫu số liệu có tần số xuất hiện bằng nhau thì mẫu số liệu đó không có mốt.

* Ví dụ: Cho mẫu số liệu:

Giá trị

35

38

40

45

Tần số

10

5

6

3

Ta thấy giá trị 35 có tần số lớn nhất, do đó, mốt của mẫu số liệu trên là Mo = 35.

Với nội dung bài viết về: Công thức tính trung vị, số trung bình, ý nghĩa của trung vị số trung bình và Mốt? Toán 10 chân trời tập 1 chương 6 bài 3 chi tiết, dễ hiểu ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững nội dung Lý thuyết Toán 10 tập 1 SGK Chân trời sáng tạo. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.

Đánh giá & nhận xét

captcha
Tin liên quan