Công thức tính số Trung bình và Mốt của mẫu số liệu ghép nhóm, quy tắc ghép nhóm? Toán 11 chân trời Tập 1 chương 5 Bài 1

20:17:5822/11/2023

Lý thuyết Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm chương 5 SGK Toán 11 Chân trời sáng tạo Tập 1. Nội dung về Công thức tính số Trung bình và Mốt của mẫu số liệu ghép nhóm, quy tắc ghép nhóm...

Công thức tính số Trung bình và Mốt của mẫu số liệu ghép nhóm, quy tắc ghép nhóm như nào? câu trả lời sẽ có ngay trong nội dung bài viết này.

1. Số liệu ghép nhóm

- Mẫu số liệu ghép nhóm thường được trình bày dưới dạng bảng thống kê có dạng như sau:

Nhóm

[u1; u2)

[u2; u3)

...

[uk; uk + 1)

Tần số

n1

n2

...

nk

Bảng 1: Bảng tần số ghép nhóm

* Chú ý:

• Bảng trên gồm k nhóm [uj; uj + 1) với 1 ≤ j ≤ k, mỗi nhóm gồm một số giá trị được ghép theo một tiêu chí xác định.

• Cỡ mẫu n = n1+ n2+ ... + nk.

• Giá trị chính giữa mỗi nhóm được dùng làmgiá trị đại diệncho nhóm ấy. Ví dụ nhóm [u1; u2) có giá trị đại diện là (u1 + u2

• Hiệu uj + 1 – uđược gọi là độ dài của nhóm [uj; uj + 1).

1.1. Một số quy tắc ghép nhóm của mẫu số liệu

Mỗi mẫu số liệu có thể được ghép nhóm theo nhiều cách khác nhau nhưng thường tuân theo một số quy tắc sau:

- Sử dụng từ k = 5 đến k = 20 nhóm. Cỡ mẫu càng lớn thì càng nhiều nhóm số liệu. Các nhóm có cùng độ dài bằng L thỏa mãn R < k . L, trong đó R là khoảng biến thiên, k là số nhóm.

- Giá trị nhỏ nhất của mẫu thuộc vào nhóm [u1; u2) và càng gần u1 càng tốt. Giá trị lớn nhất của mẫu thuộc nhóm [uk; uk + 1) và càng gần uk + 1 càng tốt.

* Chú ý:

• Các đầu mút của các nhóm có thể không là giá trị của mẫu số liệu.

• Ta hay gặp các bảng số liệu ghép nhóm là số nguyên, chẳng hạn như bảng thống kê số lỗi chính tả trong bài kiểm tra giữa học kì 1 môn Ngữ Văn của học sinh khối 11 như sau:

Số lỗi

[1; 2]

[3; 4]

[5; 6]

[7; 8]

[9; 10]

Số bài

122

75

14

5

2

Bảng số liệu này không có dạng như Bảng 1. Để thuận lợi cho việc tính các số đặc trưng cho bảng số liệu này, người ta hiệu chỉnh về dạng như Bảng 1 bằng cách thêm và bớt 0,5 đơn vị vào đầu mút bên phải và bên trái của mỗi nhóm số liệu như sau:

Số lỗi

[0,5; 2,5)

[2,5; 4,5)

[4,5; 6,5)

[6,5; 8,5)

[8,5; 10,5)

Số bài

122

75

14

5

2

* Ví dụ: Cân nặng của 28 học sinh nam lớp 11 được cho như sau:

55,4

62,6

54,2

56,8

58,8

59,4

60,7

58

59,5

63,6

61,8

52,3

63,4

57,9

49,7

45,1

56,2

63,2

46,1

49,6

59,1

55,3

55,8

45,5

46,8

54

49,2

52,6

Hãy chia mẫu dữ liệu trên thành 5 nhóm, lập bảng tần số ghép nhóm và xác định giá trị đại diện cho mỗi nhóm.

Ta có: khoảng biến thiên của mẫu số liệu trên là R = 63,6 – 45,1 = 18,5.

Độ dài mẫu nhóm L > R/k = 18,5/5 = 3,7

Ta chọn L = 4 và chia dữ liệu thành các nhóm [45; 49), [49; 53), [53; 57), [57; 61), [61; 65).

Khi đó ta có bảng tần số ghép nhóm sau:

Cân nặng

[45; 49)

[49; 53)

[53; 57)

[57; 61)

[61; 65)

Giá trị đại diện

47

51

55

59

63

Số học sinh

4

5

7

7

5

2. Số trung bình

Số trung bình của mẫu số liệu ghép nhóm, kí hiệu x, được tính như sau:

trong đó n = n1 + n2 + ... + nk.

2.1. Ý nghĩa của số trung bình của mẫu số liệu ghép nhóm

- Số trung bình của mẫu số liệu ghép nhóm là giá trị xấp xỉ cho số trung bình của mẫu số liệu gốc. Nó thường dùng để đo xu thế trung tâm của mẫu số liệu.

* Ví dụ: Kết quả khảo sát cân nặng của 25 quả cam ở mỗi lô hàng A và B được cho ở bảng sau:

Cân nặng (g)

[150; 155)

[155; 160)

[160; 165)

[165; 170)

[170; 175)

Số quả cam ở lô hàng A

2

6

12

4

1

Số quả cam ở lô hàng B

1

3

7

10

4

Hãy ước lượng cân nặng trung bình của mỗi quả cam ở lô hàng A và lô hàng B.

Ta có bảng thống kê số lượng cam theo giá trị đại diện:

Cân nặng đại diện (g)

152,5

157,5

162,5

167,5

172,5

Số quả cam ở lô hàng A

2

6

12

4

1

Số quả cam ở lô hàng B

1

3

7

10

4

Cân nặng trung bình của mỗi quả cam ở lô hàng A xấp xỉ bằng:

(2.152,5 + 6.157,5 + 12.162,5 + 4.167,5 + 1.172,5) : 25 = 161,7 (g).

Cân nặng trung bình của mỗi quả cam ở lô hàng B xấp xỉ bằng:

(1.152,5 + 3.157,5 + 7.162,5 + 10.167,5 + 4.172,5) : 25 = 165,1 (g).

3. Mốt

Nhóm chứa mốt của mẫu số liệu ghép nhóm là nhóm có tần số lớn nhất.

- Giả sử nhóm chứa mốt là [um; um + 1), khi đó mốt của mẫu số liệu ghép nhóm, kí hiệu là M0, được xác định bởi công thức

* Chú ý:

• Nếu không có nhóm kề trước của nhóm chứa mốt thì nm – 1 = 0. Nếu không có nhóm kề sau của nhóm chứa mốt thì nm + 1 = 0.

* Ý nghĩa của mốt của mẫu số liệu ghép nhóm

- Mốt của mẫu số liệu không ghép nhóm là giá trị có khả năng xuất hiện cao nhất khi lấy mẫu. Mốt của mẫu số liệu sau khi ghép nhóm Mo xấp xỉ với mốt của mẫu số liệu không ghép nhóm. Các giá trị nằm xung quanh Mo thường có khả năng xuất hiện cao hơn các giá trị khác.

- Một mẫu số liệu ghép nhóm có thể có nhiều nhóm chứa mốt và nhiều mốt.

* Ví dụ: Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:

Mức giá

(triệu đồng/m2)

[10; 14)

[14; 18)

[18; 22)

[22; 26)

[26; 30)

Số khách hàng

54

78

120

45

12

Tìm mốt của mẫu số liệu trên.

* Lời giải:

Nhóm chứa mốt của mẫu số liệu trên là nhóm [18; 22).

Do đó, um = 18, nm – 1 = 78, nm = 120, nm + 1 = 45, um + 1 – um = 22 – 18 = 4.

Mốt của mẫu số liệu ghép nhóm là:

Với nội dung bài viết về: Công thức tính số Trung bình và Mốt của mẫu số liệu ghép nhóm, quy tắc ghép nhóm? Toán 11 chân trời Tập 1 chương 5 Bài 1 chi tiết, dễ hiểu ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững nội dung lý thuyết SGK Toán 11 tập 1 Chân trời sáng tạo. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.

Đánh giá & nhận xét

captcha
Tin liên quan