Hướng dẫn giải bài 3.16 SGK Toán 12 tập 1 Kết nối tri thức chi tiết dễ hiểu nhất cho học sinh.
Bài 3.16 SGK Toán 12 Tập 1 Kết nối tri thức:
Thành tích môn nhảy cao của các vận động viên tại một giải điền kinh dành cho học sinh trung học phổ thông như sau:
a) Tính các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm trên.
b) Độ phân tán của mẫu số liệu cho biết điều gì?
Giải bài 3.16 SGK Toán 12 Tập 1 Kết nối tri thức:
a) Khoảng biến thiên của mẫu số liệu là: R = 180 – 170 = 10.
Cỡ mẫu là: n = 3 + 10 + 6 + 1 = 20.
Gọi x1; x2; ..; x20 là mức xà của 20 vận động viên được sắp xếp theo thứ tự tăng dần.
Tứ phân vị thứ nhất của mẫu số liệu là mà x5; x6 thuộc nhóm [172; 174).
Ta có:
Tứ phân vị thứ ba của mẫu số liệu là mà x15; x16 thuộc nhóm [174; 176).
Ta có:
Do đó khoảng tứ phân vị là ∆Q = 174,7 – 172,4 = 2,3.
Chọn giá trị đại diện cho mẫu số liệu ta có
Mức xà (cm) |
[170; 172) |
[172; 174) |
[174; 176) |
[176; 180) |
Giá trị đại diện |
171 |
173 |
175 |
178 |
Số vận động viên |
3 |
10 |
6 |
1 |
Mức xà trung bình là:
Phương sai và độ lệch chuẩn
Suy ra
b) Dựa vào các số liệu ở câu a, ta thấy mẫu dữ liệu có sự biến động lớn, các giá trị phân tán rộng và không đồng đều.Có sự chênh lệch đáng kể giữa các kết quả của các vận động viên.
Với nội dung bài 3.16 SGK Toán 12 tập 1 Kết nối tri thức và cách giải dễ hiểu ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải SGK Toán 12 tập 1 Kết nối tri thức. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.
» Xem giải bài tập SGK Toán 12 Tập 1 Kết nối tri thức