Bài 6.8 trang 16 Toán 10 tập 2 Kết nối tri thức

15:19:1119/01/2024

Hướng dẫn Giải bài 6.8 trang 16 Toán 10 Kết nối tri thức tập 2 SGK chi tiết dễ hiểu để học sinh tham khảo giải Toán 10 Kết nối tri thức tập 2 tốt hơn, giỏi hơn.

Bài 6.8 Toán 10 trang 16 Tập 2 Kết nối tri thức:

Từ các parabol đã vẽ ở Bài tập 6.7, hãy cho biết khoảng đồng biến và khoảng nghịch biến của mỗi hàm số bậc hai tương ứng. 

Giải bài 6.8 Toán 10 trang 16 Tập 2 Kết nối tri thức:

Từ các đồ thị ta thấy:

a) Đồ thị hàm số đi xuống từ trái qua phải trên khoảng (–∞; 3/2) nên hàm số y = x2 – 3x + 2 nghịch biến trên khoảng (–∞; 3/2)

Đồ thị hàm số đi lên từ trái qua phải trên khoảng (3/2; +∞) nên hàm số y = x2 – 3x + 2 đồng biến trên khoảng (3/2; +∞)

b) Đồ thị hàm số đi lên từ trái qua phải trên khoảng (–∞; 1/2) nên hàm số y = – 2x2 + 2x + 3 đồng biến trên khoảng (–∞; 3/2)

Đồ thị hàm số đi xuống từ trái qua phải trên khoảng (1/2; +∞) nên hàm số y = – 2x2 + 2x + 3 nghịch biến trên khoảng (1/2; +∞)

c) Đồ thị hàm số đi xuống từ trái qua phải trên khoảng (– ∞; – 1) nên hàm số y = x2 + 2x + 1 nghịch biến trên khoảng (– ∞; – 1). 

Đồ thị hàm số đi lên từ trái qua phải trên khoảng (– 1; +∞) nên hàm số y = x2 + 2x + 1 đồng biến trên khoảng (– 1; +∞).

d) Đồ thị hàm số đi lên từ trái qua phải trên khoảng (–∞; 1/2) nên hàm số y = – x2 + x – 1 đồng biến trên khoảng (–∞; 1/2)

Đồ thị hàm số đi xuống từ trái qua phải trên khoảng (1/2; +∞) nên hàm số y = – x2 + x – 1  nghịch biến trên khoảng (1/2; +∞) 

Với nội dung Giải bài 6.8 trang 16 toán 10 Kết nối tri thức tập 2 chi tiết, dễ hiểu ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải Toán 10 tập 2 Kết nối tri thức. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.

• Xem thêm Giải Toán 10 Tập 2 Kết nối tri thức

> Bài 6.7 Toán 10 trang 16 Tập 2 Kết nối tri thức: Vẽ các đường parabol sau: a) y = x2 – 3x + 2;...

> Bài 6.8 Toán 10 trang 16 Tập 2 Kết nối tri thức: Từ các parabol đã vẽ ở Bài tập 6.7, hãy cho biết khoảng đồng biến và khoảng nghịch biến của...

> Bài 6.9 Toán 10 trang 16 Tập 2 Kết nối tri thức: Xác định parabol y = ax2 + bx + 1, trong mỗi trường hợp sau: a) Đi qua hai điểm A(1; 0) và B(2; 4);...

> Bài 6.10 Toán 10 trang 16 Tập 2 Kết nối tri thức: Xác định parabol y = ax2 + bx + c, biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; – 12)...

> Bài 6.11 Toán 10 trang 16 Tập 2 Kết nối tri thức: Gọi (P) là đồ thị hàm số bậc hai y = ax2 + bx + c. Hãy xác định dấu của hệ số a và biệt thức ∆...

> Bài 6.12 Toán 10 trang 16 Tập 2 Kết nối tri thức: Hai bạn An và Bình trao đổi với nhau. An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học...

> Bài 6.13 Toán 10 trang 16 Tập 2 Kết nối tri thức: Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau...

> Bài 6.14 Toán 10 trang 16 Tập 2 Kết nối tri thức: Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng tọa độ Oxy là...

Đánh giá & nhận xét

captcha
Tin liên quan