Bài 6.34 SGK Toán 10 tập 2 Kết nối tri thức

08:33:5619/02/2025

Lời giải bài 6.34 SGK Toán 10 Tập 2 Kết nối tri thức chi tiết dễ hiểu để các em học sinh tham khảo

Bài 6.34 SGK Toán 10 Tập 2:

Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy tính đó bán được trong hai năm liên tiếp 2018 và 2019 lần lượt là 3,2 nghìn và 4 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ty, trong khoảng 10 năm kể từ năm 2018, số lượng máy tính loại đó bán được mỗi năm có thể được mô tả bởi một hàm số bậc hai. 

Giả sử t là thời gian (theo đơn vị năm) tính từ năm 2018. Số lượng loại máy tính đó bán được trong năm 2018 và năm 2019 lần lượt được biểu diễn bởi các điểm (0; 3,2) và (1; 4). Giả sử điểm (0; 3,2) là đỉnh đồ thị của hàm số bậc hai này. 

a) Lập công thức của hàm số mô tả số lượng máy tính xách tay bán được qua từng năm. 

b) Tính số lượng máy tính xách tay đó bán được trong năm 2024. 

c) Đến năm bao nhiêu thì số lượng máy tính xách tay đó bán được trong năm sẽ vượt mức 52 nghìn chiếc? 

Giải bài 6.34 SGK Toán 10 Tập 2:

a) Giả sử hàm số cần lập có dạng y = f(t) = at2+ bt + c, với a, b, c là các số thực, a ≠ 0. 

Trong đó, t là thời gian (theo đơn vị năm) tính từ năm 2018 nên t > 0 và ta quy ước tại năm 2018 thì t = 0, năm 2019 thì t = 1, tương tự cho các năm sau và f(t) là số lượng máy tính bán ra qua từng năm.

Số lượng loại máy tính đó bán được trong năm 2018 và năm 2019 lần lượt được biểu diễn bởi các điểm (0; 3,2) và (1; 4).

Vì vậy, đồ thị hàm số y = f(t) = at2 + bt + c đi qua các điểm (0; 3,2) và (1; 4) nên ta có: 

3,2 = a . 02 + b . 0 + c ⇔ c = 3,2

Và 4 = a . 12 + b . 1 + c ⇔ a + b + 3,2 = 4 ⇔ a + b = 0,8 ⇔ a = 0,8 – b (1). 

Lại có đồ thị hàm số trên có đỉnh là (0; 3,2) nên:

 (vì a ≠ 0). 

Thay vào (1) ta có: a = 0,8 – 0 = 0,8. 

Vậy ta có hàm số: y = f(t) = 0,8t2 + 3,2. 

b) Đến năm 2024 thì loại máy tính trên đã bán ra được số năm là: 2024 – 2018 = 6 (năm). Do đó t = 6. 

Suy ra: f(6) = 0,8 . 62 + 3,2 = 32. 

Vậy trong năm 2024 số lượng máy tính bán ra được là 32 nghìn chiếc. 

c) Số lượng máy tính xách tay bán ra được trong năm vượt mức 52 nghìn chiếc nghĩa là f(t) > 52 hay 0,8t2 + 3,2 > 52 

⇔ t2 > 61 

⇔  hoặc 

Mà t > 0 nên 

Như vậy, trong năm thứ 8 kể từ khi bắt đầu bán thì số lượng máy tính bán ra được trong năm sẽ vượt mức 52 nghìn chiếc và đó chính là năm 2018 + 8 = 2026. 

Vậy trong năm 2026 thì số lượng máy tính xách tay đó bán được trong năm sẽ vượt mức 52 nghìn chiếc. 

Với lời giải bài 6.34 SGK Toán 10 Tập 2 kết nối tri thức ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải Toán 10 tập 2 Kết nối tri thức. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.ac

• Xem hướng dẫn giải bài tập SGK Toán 10 Tập 2 Kết nối tri thức

Bài 6.24 SGK Toán 10 Tập 2 Kết nối tri thức: Tập xác định của hàm số y = 1/[√(x - 2)] là: A. D = [2; + ∞)...

Bài 6.25 SGK Toán 10 Tập 2 Kết nối tri thức: Parabol y = – x2 + 2x + 3 có đỉnh là A. I(– 1; 0)...

Bài 6.26 SGK Toán 10 Tập 2 Kết nối tri thức: Hàm số y = x2 – 5x + 4. A. Đồng biến trên khoảng (1; + ∞)...

Bài 6.27 SGK Toán 10 Tập 2 Kết nối tri thức: Bất phương trình x2 – 2mx + 4 > 0 nghiệm đúng với mọi x ∈ R khi A. m = – 1...

Bài 6.28 SGK Toán 10 Tập 2 Kết nối tri thức: Tập nghiệm của phương trình √(2x2 - 3) = x - 1 là...

Bài 6.29 SGK Toán 10 Tập 2 Kết nối tri thức: Tìm tập xác định của các hàm số sau: a) y = √(2x - 1) + √(5 - x)...

Bài 6.30 SGK Toán 10 Tập 2 Kết nối tri thức: Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập giá trị, khoảng đồng biến, khoảng nghịch biến...

Bài 6.31 SGK Toán 10 Tập 2 Kết nối tri thức: Xác định parabol (P): y = ax2 + bx + 3 trong mỗi trường hợp sau:...

Bài 6.32 SGK Toán 10 Tập 2 Kết nối tri thức: Giải các bất phương trình sau: a) 2x2 – 3x + 1 > 0;...

Bài 6.33 SGK Toán 10 Tập 2 Kết nối tri thức: Giải các phương trình sau:  a) √(2x2 - 14) = x - 1...

Bài 6.34 SGK Toán 10 Tập 2 Kết nối tri thức: Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy...

Đánh giá & nhận xét

captcha
Tin liên quan