Hướng dẫn giải bài 6.23 SGK Toán 9 tập 2 Kết nối tri thức chi tiết dễ hiểu nhất cho học sinh.
Bài 6.23 SGK Toán 9 Tập 2 Kết nối tri thức:
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:
а) x2 – 12x + 8 = 0;
b) 2x2 + 11x – 5 =0;
c) 3x2 – 10 = 0;
d) x2 – x + 3 = 0.
Giải bài 6.23 SGK Toán 9 Tập 2 Kết nối tri thức:
a) x2 – 12x + 8 = 0.
Ta có: ∆’ = (–6)2 – 1.8 = 28 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
x1 + x2 = 12; x1x2 = 8.
b) 2x2 + 11x – 5 =0.
Ta có: ∆ = 112 – 4.2.(–5) = 161 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
x1 + x2 = -11/2; x1x2 = -5/2.
c) 3x2 – 10 = 0.
Ta có: ∆’ = 02 – 3.(–10) = 30 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.
Theo định lí Viète, ta có:
x1 + x2 = -0/3 = 0; x1x2 = -10/3.
d) x2 – x + 3 = 0.
Ta có: ∆ = (–1)2 – 4.1.3 = –11 < 0 nên phương trình vô nghiệm.
Với nội dung bài 6.23 SGK Toán 9 tập 2 Kết nối tri thức và cách giải dễ hiểu ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững phương pháp giải SGK Toán 9 tập 2 Kết nối tri thức. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.
» Xem thêm giải SGK Toán 9 Tập 2 Kết nối tri thức