Cách ước lượng kết quả và cách làm tròn số với độ chính xác cho trước? Toán 7 bài 4 cd1c2

15:11:3313/11/2023

Lý thuyết Bài 4: Làm tròn và ước lượng nằm ở chương 2 SGK Toán 7 Cánh diều Tập 1. Nội dung trọng tâm: Cách ước lượng kết quả và cách làm tròn số với độ chính xác cho trước.

Cách ước lượng kết quả và cách làm tròn số với độ chính xác cho trước như thế nào? câu trả lời sẽ có ngay trong nội dung bài viết này.

I. Làm tròn số

1. Số làm tròn

Ở nhiều tình huống thực tiễn ta cần tìm một số thực khác xấp xỉ với số thực đã cho để thuận tiện hơn trong ghi nhớ, đo đạc, hay tính toán. Số thực tìm được như thế được gọi là số làm tròn của số thực đã cho.

* Ví dụ: Hóa đơn tiền điện của gia đình bạn An tháng 9/2021 là 356 870 đồng. Trên thực tế mẹ của An đã trả tiền mặt cho người thu tiền điện 357 000 đồng.

Vậy số 357 000 là số làm tròn của số 356 870.

2. Cách làm tròn số với độ chính xác cho trước

Ta nói số a được làm tròn đến số b với độ chính xác d nếu khoảng cách giữa điểm a và điểm b trên trục số không vượt quá d.

* Ví dụ: Làm tròn số 126 đến hàng chục ta được số 130. Khoảng cách giữa hai điểm 126 và 130 trên trục số là 130 – 126 = 4. Khoảng cách này không vượt quá 5. Khi đó ta nói số 126 được làm tròn đến số 130 với độ chính xác 5.

* Nhận xét:

- Khi làm tròn số đến một hàng nào đó thì độ chính xác bằng nửa đơn vị của hàng làm tròn (sử dụng bảng 1).

- Để làm tròn số với độ chính xác cho trước, ta có thể sử dụng cách ở bảng 2 sau:

Cách làm tròn số với độ chính xác cho trước

- Để làm tròn một số thập phân âm, ta chỉ cần làm tròn số đối của nó rồi đặt dấu “–” trước kết quả.

* Ví dụ 1: 

a) Làm tròn số 23 615 với độ chính xác 5.

b) Làm tròn số 187 638 với độ chính xác 50.

* Lời giải:

a) Vì 1 < 5 < 10 nên ta làm tròn số 23 615 đến hàng chục.

Gạch chân dưới chữ số hàng chục: 23 615.

Nhận thấy chữ số hàng đơn vị là 5 nên ta tăng thêm chữ số hàng chục một đơn vị và thay chữ số hàng đơn vị bởi số 0.

Vậy số 23 615 làm tròn với độ chính xác 5 ta thu được kết quả là 23 620.

b) Vì 10 < 50 < 100 nên ta làm tròn số 187 638 đến hàng trăm.

Gạch chân dưới chữ số hàng trăm: 187 638 .

Nhận thấy chữ số hàng chục là 3 < 5 nên ta giữ nguyên chữ số hàng trăm và thay các chữ số hàng chục và hàng đơn vị bởi số 0.

Vậy số 187 638 làm tròn với độ chính xác 50 ta thu được kết quả là 187 600.

* Ví dụ 2:

a) Làm tròn số 3,141592653… đến hàng phần trăm.

b) Làm tròn số 128,25 với độ chính xác 0,05.

c) Làm tròn số –1,9254 với độ chính xác 0,005

* Lời giải:

a) Ta áp dụng quy tắc làm tròn số thập phân hữu hạn. Do chữ số ở hàng phần nghìn là 1 < 5 nên 3,141592653… ≈ 3,14.

Người ta chứng minh được rằng số 3,141592653… làm tròn đến 3,14 cũng với độ chính xác 0,005.

b) Để làm tròn số 128,25 với độ chính xác 0,05 ta sẽ làm tròn đến hàng phần mười. Áp dụng quy tắc làm tròn số ta được 128,25 ≈ 128,3.

c) Để làm tròn số –1,9254 với độ chính xác 0,005 ta sẽ làm tròn đến hàng phần trăm. Áp dụng quy tắc làm tròn số ta được 1,9254 ≈ 1,93. Vì vậy, – 1,9254 ≈ –1,93.

II. Ước lượng

Đôi khi ta không quá quan tâm đến kết quả chính xác mà chỉ cần ước lượng kết quả, nghĩa là tìm một số gần sát với kết quả chính xác.

* Ví dụ 1: Ước lượng kết quả của phép tính: 49,87 . 1000,16

Ta ước lượng 49,87 . 1000,16 ≈ 50 . 1000 = 50 000

* Ví dụ 2: Áp dụng quy tắc làm tròn số để ước lượng kết quả của mỗi phép tính sau:

a) 18,25 + 11,98;

b) 11,91 – 2,49;

c) 30,09.(–29,87)

* Lời giải:

a) Làm tròn số 18,25 đến hàng đơn vị ta được số là 18; làm tròn số 11,98 đến hàng đơn vị ta được số là 12.

Khi đó ta ước lượng kết quả phép tính 18,25 + 11,98 là 18,25 + 11,98 ≈ 18 + 12 = 30.

Vậy kết quả của phép tính 18,25 + 11,98 gần với 30.

b) Làm tròn số 11,91 đến hàng phần mười ta được số 11,9; làm tròn số 2,49 đến hàng phần mười ta được số 2,5.

Khi đó ta ước lượng kết quả phép tính 11,91 – 2,49 là 11,91 – 2,49 ≈ 11,9 – 2,5 = 9,4.

Vậy kết quả của phép tính 11,91 – 2,49 gần với 9,4.

c) Làm tròn số 30,09 đến hàng đơn vị ta được số 30; làm tròn số (-29,87) đến hàng đơn vị ta thu được kết quả là –30.

Khi đó ta ước lượng kết quả phép tính 30,09.(–29,87) là 30,09.(–29,87) ≈ 30.(–30) = –900.

Vậy kết quả của phép tính 30,09.(–29,87) gần với –900.

Với nội dung bài viết về: Cách ước lượng kết quả và cách làm tròn số với độ chính xác cho trước? Toán 7 bài 4 chi tiết, dễ hiểu ở trên. Hay Học Hỏi hy vọng giúp các em nắm vững nội dung lý thuyết bài 4 chương 2 SGK Toán 7 tập 1 Cánh diều. Mọi góp ý và thắc mắc các em hãy để lại nhận xét dưới bài viết để được ghi nhận và hỗ trợ, chúc các em học tốt.

Đánh giá & nhận xét

captcha
Tin liên quan